Ein neuer Blick in das Heiße und Energetische Universum
ESA wählt Wissenschaftsthema für nächste Großmission
Wie bildeten sich die großräumigen Strukturen aus gewöhnlicher Materie, die wir heute sehen? Wie sind Schwarze Löcher gewachsen und wie prägten sie das Universum? Diese Fragen gehören zu den wichtigsten offenen Problemstellungen der modernen Astrophysik, und die nächste große ESA-Mission könnte die nötigen Antworten liefern.
"Wir freuen uns sehr, dass die ESA das „Heiße und Energetische Universum“ als eines seiner Hauptziele ausgewählt hat", sagt Nandra, der Sprecher des Wissenschaftsthemas und Leiter der Athena Kollaboration, die diesen Vorschlag in einem White Paper vorbereitet hatte. "Wir haben ein hervorragendes Team an Astrophysikern, deren Argumente für dieses spannende Thema eindeutig überzeugt haben. Unsere Arbeit ist damit aber noch längst nicht getan: jetzt müssen wir daran arbeiten, ein Röntgenteleskop zu definieren, das uns die gewünschten Antworten liefern kann."
Gewöhnliche Materie liegt im Universum größtenteils als heißes Gas vor. Dieses ist zum Beispiel für die Galaxienhaufen verantwortlich, die größten zusammenhängenden Strukturen, die wir heute kennen. Bei Temperaturen von mehr als zehn Million Grad emittiert das Gas besonders hell im Röntgenbereich. Deshalb ist ein Röntgenobservatorium im Weltraum mit hoher Empfindlichkeit, guter spektraler Auflösung und einem großen Sichtfeld der Schlüssel dazu, die Entstehung und Entwicklung dieser Strukturen zu verstehen. Athena wurde zu genau diesem Zweck konzipiert. Mit einem derartigen Teleskop könnten Astronomen spektroskopische Beobachtungen von weit entfernten Galaxien erhalten und die physikalischen Parameter der größten gebundenen Objekte vermessen. Diese Informationen würden unser Verständnis davon, wie sich die Strukturen aus heißem Gas in der Kinderstube des Universums bildeten, einen großen Schritt voran bringen. Messungen der Geschwindigkeiten, der Thermodynamik und der chemischen Zusammensetzung des heißen Gases sowie die Veränderung dieser Parameter auf kosmischen Zeitskalen würde den Wissenschaftlern auch ganz neue Einblicke in komplexe astrophysikalische Prozesse erlauben, wie Turbulenzen oder nicht-gravitative Heizung. Derartige Vorgänge sind von entscheidender Bedeutung, wenn die Wissenschaftler verstehen wollen, wie sich Strukturen aus gewöhnlicher Materie bilden und entwickeln.
Athena
Athena wird tief ins Universum blicken, wo sich die ersten Sterne, Galaxien und Schwarzen Löcher bilden.
Mit einem Röntgenteleskop wie Athena könnten die Astronomen sogar noch weiter in die Geschichte des Universums zurück blicken, um dort die energiereichsten Vorgänge zu untersuchen und die ersten supermassereichen Schwarzen Löcher zu entdecken. Diese stammen aus einer Zeit, als sich die ersten Galaxien bildeten, weniger als eine Milliarde Jahre nach dem Urknall. Aufgrund der extrem hohen Temperaturen und der riesigen Energiemengen, die Materie abgibt, wenn sie in ein Schwarzes Loch fällt, ist Röntgenstrahlung die verlässlichste und vollständigste Methode, um diese akkretierenden Monster zu untersuchen. Bemerkenswerterweise scheinen Prozesse aus der unmittelbaren Nähe des Schwarzen Lochs in der Lage zu sein, ganze Galaxien und Galaxienhaufen auf Milliarden-mal größeren Längenskalen zu beeinflussen. Diese "kosmische Rückkoppelung" ist daher ein wesentlicher - aber bisher unzureichend verstandener - Bestandteil von Modellen zur Galaxienentwicklung. "Diese Schwarzen Löcher setzen genügend Energie frei, um ganze Galaxien auseinander zu blasen", sagt Nandra.
Das Wachstum von supermassereichen Schwarzen Löchern über kosmische Zeitskalen hinweg nachzuverfolgen, insbesondere in der frühesten Epoche der Galaxienbildung (bei z=6-10), ist mit heutigen Instrumenten und Teleskopen unmöglich. "Aber inzwischen haben wir die Technologien für die Röntgenoptik genügend weiterentwickelt, um nicht nur einen kleinen Schritt sondern einen großen Sprung in Bezug auf Lichtsammelfläche und Winkelauflösung für großflächigen Röntgenbilder zu machen", sagt Nandra. "Am MPE haben wir in den letzten Jahren unsere Röntgendetektoren kontinuierlich für genau diese Einsatzmöglichkeit entwickelt. Jetzt haben wir die Chance, damit das Universum mit ausgezeichneter Empfindlichkeit und über einen beispiellos großen Himmelsbereich hinweg abzutasten. Die frühesten supermassereichen Schwarzen Löcher sind jetzt in unserer Reichweite."
Nachdem das Wissenschaftsthema von der ESA jetzt festgelegt wurde, folgt als nächster Schritt die Suche nach einem Röntgenobservatorium, das diese wissenschaftlichen Ziele erreichen kann. Da das Team von Athena dieses Themas vorgeschlagen hatte und auch die erforderlichen Technologien bereits vorweisen kann, sind die Wissenschaftler zuversichtlich, dass ihre Mission das Rennen machen wird. Sobald ein Missionskonzept ausgewählt wird, sollte die Technologieentwicklung in einem Zeitraum von 3-4 Jahren konsolidiert werden. Anschließend dürfte es weitere 10 Jahre dauern, um das Observatorium fertig zu stellen. Ab 2028 könnte Athena dann das heiße und energetische Universum mit bisher unerreichter Genauigkeit durchleuchten und eine Antwort auf die grundlegende Frage finden, warum unser Universum so aussieht, wie wir es heute beobachten.
Athena und eLISA
Ein Film des Albert-Einstein-Insituts / Max-Planck-Institut für Gravitationsphysik
Nach der Auswahl des "Heißen und Energetischen Universum" für die nächste Großmission, beschloss die ESA das „gravitative Universum" als Thema bei der darauffolgenden Großmission zu verfolgen. Als bester Kandidat gilt dafür das Gravitationswellenobservatorium eLISA („evolved Laser Interferometer Space Antenna.
Weitere Informationen
Zu den Autoren, die überzeugende Argumente für das „Heiße und Energetische Universum“ lieferten, zählen 140 Wissenschaftler aus über 20 Ländern weltweit. Zu den wichtigsten beteiligten Instituten in Deutschland gehören das MPE, die Rheinische Friedrich-Wilhelms-Universität Bonn, die Friedrich-Alexander-Universität Erlangen-Nürnberg und die Eberhard Karls Universität Tübingen.