Kick-off for a new era of precision astronomy

Start of the Preliminary Design Phase for the MICADO camera for the E-ELT

October 06, 2015
The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement. As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared wavelengths.

MICADO is the Multi-AO Imaging Camera for Deep Observations, which has been designed to work on the 39-m European Extremely Large Telescope (E-ELT). This revolutionary telescope will be the largest optical/near-infrared telescope in the world, gathering about 15 times more light than the largest optical telescopes existing today. The MICADO camera will provide the capability for diffraction-limited imaging at near-infrared wavelengths, taking the power of adaptive optics to the next level. To correct for distortions due to the Earth’s atmosphere, MICADO is optimized to make use of adaptive optics (AO): a simple single conjugate AO mode (SCAO) for correction of individual targets and a powerful multi-conjugate AO mode provided by the MAORY (Multi-conjugate Adaptive Optics RelaY) instrument to obtain sharp images over a wide-field of view.

The key capabilities of MICADO are matched to the unique features of the new telescope, and will lead to dramatic discoveries of new or unexplored astrophysical phenomena. To name but a few: Its high sensitivity will allow it to detect the faintest stars and furthest galaxies. Its unprecedented spatial resolution will reveal structures in nebulae and galaxies in detail far beyond what is currently possible. For instance, by resolving stellar populations in distant galaxies their star formation history and evolution can be studied. And with the superb astrometric precision achieved by MICADO, many astronomical objects will no longer be static – they will become dynamic. Measuring the tiny movements of stars will reveal the presence of otherwise hidden black holes in star clusters, and tracking the motions of star clusters will lead to new insights about how our Milky Way formed. In addition, MICADO includes a special mode that will allow it to directly observe and characterize extrasolar planets, and another that enables it to take spectra of compact objects.

“It’s an incredibly exciting prospect, the measurements we’ll be able to make with our camera and this giant future telescope,” says Ric Davies, the Principal Investigator at MPE. “But this is also a very challenging project, and I am glad to have such a capable and enthusiastic team.” 

The MICADO instrument will be developed and built by a consortium of European institutes in collaboration with ESO. All partners have a strong tradition of working together to design and build world-class optical and infrared instrumentation. The project is expected to last nearly 10 years from the beginning of the current design phase to the end of commissioning, with the first light of both the E-ELT and MICADO planned for 2024.

As the lead institute, MPE is responsible for the overall project management and system engineering, and represents the consortium towards ESO. In addition, the team at MPE takes the lead in the developing and constructing the MICADO cryostat and the cold optics. As an instrument for infrared wavelengths, the whole MICADO camera has to be cooled with liquid nitrogen to a temperature of about -196° Celsius – otherwise it would only “see” itself. This means that also the optics inside the cryostat, i.e. the mirrors and lenses guiding the light from the telescope to the actual detectors has to work in this cold environment, posing challenges on both material and positioning.

ESO supports the development of the MICADO instrument as an associate consortium member. It is responsible for two key areas: development and procurement of the science detector systems and the design of the adaptive optics wave front sensing and guide camera system with its associated real-time computer. Both activities are carried by ESO for all E-ELT instrumentation projects. In addition ESO is responsible for and manages the crucial interface between the MICADO science instrument and the multi-conjugate adaptive optics instrument MAORY.

Note:

The MICADO consortium comprises:

MPE: Max-Planck-Institut für extraterrestrische Physik (Germany); PI: Ric Davies

MPIA: Max-Planck-Institut für Astronomie (Germany); CoI: Jörg-Uwe Pott

USM: Universitäts-Sternwarte München(Germany); CoI: Florian Lang-Bardl

IAG: Institute for Astrophysics of the Georg-August-Universität Göttingen (Germany); CoI: Harald Nicklas

NOVA: Netherlands Research School for Astronomy (represented by University of Groningen, the University of Leiden, and the NOVA optical/infrared instrumentation group based at ASTRON in Dwingeloo) (The Netherlands); CoI: Eline Tolstoy (at Univ. Groningen)

INAF-OAPD: National Institute for Astrophysics at the Observatory of Padova; CoI: Roberto Ragazzoni (at OAPD)

CNRS/INSU: Centre National de la Recherche Scientifique/Institut National des Sciences de l’Univers (represented for MICADO by LESIA, GEPI and IPAG) (France); CoI: Yann Clenet (at LESIA)

A*: An Austrian partnership (represented for MICADO by the University of Vienna, the University of Innsbruck, the University of Linz, and RICAM Linz [Austrian Academy of Sciences]) (Austria); CoI: Joao Alves (Uni. Wien)

Other Interesting Articles

Go to Editor View