For a long time the formation of protostellar disks – a prerequisite to the formation of planetary system around stars – has defied theoretical astrophysicists: In a dense, collapsing cloud of gas and dust, the magnetic field would be dragged to the centre as well resulting in a braking effect. Hardly any rotationally supported disk can form this way, unless the tiny grains are removed from the cloud by growing or coagulating into bigger grains. This is the result from a new study published by researchers at the Max Planck Institute for Extraterrestrial Physics and other institutions. The more realistic simulations now take into account non-ideal magneto-hydrodynamics and ionization chemistry to form a rotationally supported protostellar disk.
Although rotationally supported disks are frequently observed around young stellar objects, theoretical studies have found it difficult to form such disks. The main problem is the magnetic field in the interstellar matter, which will lead to the so-called “magnetic braking catastrophe”, even for moderate magnetic field strengths. In models using ideal magneto-hydrodynamics (MHD) the gas is “frozen” into the magnetic field, and the field lines are dragged towards the centre by the collapsing gas resulting an hourglass-shaped magnetic field. Strongly pinched field lines connect materials in the stellar vicinity and that in the envelope much further out, transferring angular momentum away from the centre. Even in non-ideal MHD models where neutral matter is allowed to drift relative to the magnetic field, the formation of rotationally supported disks remains difficult, if a standard ionization chemistry is used in computing the non-ideal MHD effects.
“The problem are the tiny dust grains; if they are absent we do get a rotationally supported disk”, states Bo Zhao, lead author of the paper now published in MNRAS. “These tiny grains, easily charged by absorbing ions and electrons, are effective both in coupling to the magnetic field and in collision with their surrounding molecules. In other words, the neutral matter is still relatively well coupled to the magnetic field because of these tiny grains. However, if we remove them, the larger grains do not couple as effectively and the neutral matter of the cloud can sneak much faster through the magnetic field lines and eventually form a disk with enough rotation support.”
Interstellar molecular clouds are made up of both gas and dust grains, with a “standard” distribution of grain sizes that includes a large population of nanometre-size grains. However, such a size distribution may not represent the denser part of the molecular clouds. In cold dense molecular clouds, tiny grains of nanometre size may behave as large molecules and freeze on the surface of larger dust grains. Further support for this idea also comes from centimetre-wavelength observations trying to detect emission from spinning dust grains; they too show a lack of tiny grains with size below a few nanometres in dense molecular clouds.
“When grains are mostly larger than 0.1 micrometres, the rotationally supported disks can become massive enough to be self-gravitating and evolve into rings”, says Zhao. “Such a structure in 3D could easily fragment into multiple stellar systems, which may also help explain the high multiplicity of stars in our Milky Way.”
“It is surprising to find that the removal of small dust grains can avoid the ‘magnetic braking catastrophe’ in disk formation,” says Paola Caselli, co-author of the paper. “This is a breakthrough in our understanding of how protoplanetary disks form. At the same time, it demonstrates that chemistry and microphysics are crucial to the fundamental processes in the field of star and planet formation."
An international group of astrophysicists, led by MPE scientists Marta Obolentseva, Alexei Ivlev, Kedron Silsbee, and Paola Caselli, have revisited the long-standing problem of evaluating the rate at which cosmic rays ionize gas in the interstellar medium. By combining available observational data for diffuse molecular clouds with novel…
Using the JWST, a team of researchers including Paola Caselli, Barbara Michela Giuliano and Basile Husquinet from MPE, have probed deep into dense cloud cores, revealing details of interstellar ice that were previously unobservable. The study focuses on the Chamaeleon I region, using JWST’s NIRCam to measure spectroscopic lines towards hundreds of stars behind the cloud.
In a groundbreaking study, the James Webb Space Telescope (JWST) observed the early stages of the growth of dust grains in the dense Chamaeleon I cloud. These cold dust grains have accumulated molecular solids on their surface early in the process leading to star formation, challenging previous assumptions on where and when grain growth occurs. The…
A recent study led by researchers at the Max Planck Institute for Extraterrestrial Physics challenges conventional notions of star formation by revealing the intricate connection between streamers and filaments. Focusing on the star-forming region Barnard 5, the study traces the journey of material from larger scales to protostellar disks…
Liquid water is one of the most important ingredients for the emergence of life as we know it on Earth. Researchers of the ORIGINS Cluster and the Max Planck Institute for Extraterrestrial Physics from the fields of astrophysics, astrochemistry and biochemistry have now determined the necessary properties that allow moons around free-floating…
High-resolution ALMA observations of the system IRAS 16293-2422 have revealed localized hot spots in the dusty material of the young stellar system. The study led by the Max Planck Institute of Extraterrestrial Physics indicates that these are most likely due to local shocks caused by fast gas motions rather than illumination from the protostars…
The German Astronomical Society (AG) has awarded MPE scientist Dr. Tommaso Grassi with the Astrophysical Software Award for the development of the astrochemistry package KROME. The award ceremony will take place at the University of Bremen during the annual AG meeting from 12th to 16th of September 2022.
Astronomers at the Max Planck Institute for Extraterrestrial Physics have found evidence that just before star formation, in the central region of a pre-stellar cloud, practically all heavy molecules freeze out on top of dust grains. The ALMA observations of the L1544 cloud in the constellation Taurus showed not only a central concentration of dust…
The European Astronomical Society awards the 2022 Fritz Zwicky Prize for Astrophysics & Cosmology to Prof. Ewine F. van Dishoeck (Leiden University, the Netherlands and Max Planck Institute for Extraterrestrial Physics). The Fritz Zwicky Prize for Astrophysics & Cosmology honours scientists who have obtained fundamental and outstanding results…
For her excellent Dissertation, MPE junior scientist Elena Redaelli will receive the Otto Hahn Medal from the Max Planck Society in 2021. The prize is awarded for work on regions of our Galaxy where stars like our Sun are currently formed, being able to unveil the physical and chemical structure of interstellar molecular clouds. Her thesis on…