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Broad-line reverberation
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Background:
Bahcall et al. 1972,
Blandford & McKee 1982,
Peterson 1993




Black hole masses from reverberation

e |f the broad-line kinematics are dominated by
gravity, we can derive a virial estimate the
central mass using the lag time At and the

broad-line width:
2

rv
Mpg :f?

(cAt)[FWHM(HS)]
= f G
e HP reverberation data available for ~35 low-

redshift Seyferts & quasars (Kaspi et al. 2000;
Peterson et al. 2004)

* Mass estimates from this technique are claimed _ | (Nelson et al 2004) -
to be accurate to typically a factor of ~3 (Onken Pl pen b ealandian plsom gl
et al 2004, Nelson et al 2004, Peterson et al ° L
2004, Vestergaard et al 20006)




The broad line region radius-luminosity relationship

e The broad-line region size is correlated with AGN continuum luminosity:
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a = 0.525 £ 0.040

e From a single spectrum, can
measure both linewidth and
continuum luminosity

e Use L to estimate r(BLR), then
apply the virial relation to
estimate M
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Project Goals
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Overall goal: to improve the calibration of the AGN radius-
luminosity relation and M-o relation at low masses and low
luminosities by measuring reverberation lags for more AGNs




The Project Mk "

e Sample: 12 Seyfert galaxies having
expected BH mass of 10° - 3x10” Mo, and

expected Hp lag times of 3-10 days

¢ plus one additional well-studied “control”
object (NGC 5548)

e Need a continuous spectroscopic monitoring
campaign to detect night-to-night variability

e every object observed on every clear night

e 64 mostly consecutive nights on the Lick 3-m
telescope allocated during March-May 2008

¢ Nightly photometric monitoring from 4
smaller telescopes: KAIT 0.8m, Tenagra :
0.8m, Palomar 60-inch, and MAGNUM 2m A

5000
Rest Wavelength ()




The data: one night’s work at Lick
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Light curves from imaging data

Mrk 1310

Magnitude
| 'M'agni'tu'de' |

3550
HJD-2454000

Spectroscopic monitoring started here




Arp 151 results (Bentz, Walsh, Barth, et al, ApJL 2008)
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HP lags the continuum by 4.3+0.7 days




a0 - NGC 6814

Velocity-resolved reverberation

e The variability of the emission-line flux in response
to the driving continuum variability is given by

LV t) = / U(V,., 7)C(t — 7)dr
e C(t) is the continuum light curve

e | (Vy, 1) is the emission-line light curve as a function of line-of-sight velocity
and time

e W(V,, 1) is the transfer function

e it depends on the detailed geometry, kinematics, and emissivity distribution
of the broad-line region




Velocity-resolved reverberation

Velocity (km/s)

Time delay (days)

(figures from Welsh
& Horne 1991)

Rotating
Keplerian disk




(figures from Welsh

Velocity-resolved reverperation % Horne 1991)

blueshifted redshifted : r Outflow
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' ' (figures from Welsh
Velocity-resolved reverberation % Home 1991)
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Velocity-resolved reverberation
: (Bentz, Walsh, Barth, et al,
N Arp 151 ApJL, 2008)
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e Hf lag measured as a function of ! Blueshifted Redshifted

velocity across the broad emission

line |
e Blue/red asymmetry indicates i | +

inflowing motions in the BLR ++
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Slack hole masses (Bentz et al, in prep.)

I l I I I

LAMP
Other RM

e Reverberation lags measured
successfully for 9 out of 13 objects
(including NGC 5548)

Number

* Typical measurement uncertainty on
the HP lag is ~20-25%

x NN




Characteristic variability timescales

e [For discretely-sampled time series, the variability can be characterized by a
structure function (e.g., Cid Fernandes et al. 2000; Collier & Peterson 2001):

where T =1; —1;




(Data from

Characteristic variablility timescales Collier & Peterson 2001)
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(Data from

Characteristic variablility timescales Collier & Peterson 2001)

e SF is typically normalized by dividing by the light curve variance o2

i Power-law section: :

i Shows the range of
: timescales over which

 variations are correlated

Log S (Normalifed)

} Flat section: ,

",; For an infinite, stationary
} process, the light curve

0.5

i flattens out when variations
¥ are no longer correlated

:In the flat section, the |
} structure function typically
t oscillates strongly due to the §
! finite duration of the !
f observed time series




P Structure functions (Walsh et al., in prep)
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Dependence of variability timescale on
black hole mass (Walsh et al., in prep)
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Cid .
Fernandes

etal. 2000 ,

A
Collier &

Peterson

m=0.89 £0.10
b=-5.15 +0.78
Scat=0.33 +0.07

Likelihood Analysis
+ NGC 4395; ....... FITEXY
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Variabllity timescale:
relatiOnShip with Mg and L (Walsh et al., in prep)
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e Determine the combination of
log(MgH) and log(Lbol) that best
predicts the characteristic
timescale by minimizing the

v scatter

sample

HEH
S HEH
T i
0.49 0.18
0.

A
B 31 +0.13
C

e Relationship holds over ~4 orders
of magnitude in Mgh, including
the dwarf AGN NGC 4395

e See also Kelly et al (2009) for

-15.81 +4.45 ~ related results from light-curve

+NGC4395 Scat = 0.27 +0.07 ] oy
i o Iqsroohes e al. 2006 flttlng
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log[Tenar/days] = A log[Me/Me] + B log[Lbo/(erg s1)] + C



Future work

e Reverberation lags for other lines: Hx, Hy, He ll
e Stellar velocity dispersions and the Mgn-0 relation for the AGNs
e Cycle 17 Hubble project approved to image the entire sample

e GALFIT modeling of HST images gives a clean measurement of the bulge
starlight contamination of the AGN- use this to determine the BLR radius-
luminosity relationship

® MgH - Lbuige relationship
* Modeling the velocity-resolved variability to constrain the BLR kinematics
e MAGNUM near-infrared light curves: K-band reverberation

e Test which single-epoch recipes best reproduce the Mgn determined from
reverberation data




Summary

e Reverberation mapping is fundamental for understanding the cosmic
evolution of black hole masses

e | AMP has obtained 8 new reverberation lag measurements for local AGNs at
low masses & luminosities

¢ \elocity-resolved variability shows a variety of kinematic states in BLRs

e Characteristic optical variability timescales in AGNs are well correlated with
black hole mass and luminosity

e \With large multi-color variability surveys, these relationships can provide
new clues to accretion disk structure

e Reverberation mapping remains an important niche for small to medium-sized
telescopes




