Università degli Studi dell'Insubria Dipartimento di Fisica e Matematica Dottorato in Astronomia e Astrofisica

Roberto Decarli The M_{BH} - M_{host} relation through Cosmic Time

M. LabitaM. DottiA. TrevesF. HaardtR. FalomoM. VolonteriJ.K. KotilainenM. ColpiM. UslenghiC. Montuori

+ Many PGN09 speakers

Schloss Ringberg - June, 18, 2009

Introduction Black hole masses in quasars Quasar host galaxies The $M_{\rm BH}/M_{\rm host}$ ratio through Cosmic Time Biases Conclusions & Open questions

The object of the month

BHs and galaxies: clues of a common history

Massive BHs are ubiquitous

Quasar LFs – star formation density evolution (Dunlop & Peacok 1990; Madau et al., 1998)

M_{BH} - L, M, s_{*} relations Salpeter's time « Hubble time

Soltan's argument (Soltan 1982)

Massive black holes are responsible of quasar luminosities

Feedback

M_{BH} – core mass deficit – merger history John's talk

Galaxy merger – nuclear activity Nicola's talk (?)

Stephanie's talk

Massive black holes ...

.. affect the gas dynamics in the broad line region $(=> M_{\rm BH} \text{ measure in quasars})$

The host galaxy shares a common history with the singularity

Our study

- 108 quasars (57 RQQs, 51 RLQs) from z=0 to z=3 (2x the samples by Peng et al., 2006 and 3x McLure et al., 2006)
- Host galaxy luminosity from high res. images
- Black hole masses from good quality spectra
- For low-z quasars, images in the HST-WFPC2 archive, spectra from the SDSS and HST-FOS archives and from on-purpose observations at the Asiago 1.82m Telescope.

 For z>0.5 targets, images taken at the NOT and the ESO/VLT, spectra from the NOT and ESO/3.6m Telescope.

The FUV-to-V spectrum of low-z QSOs

Virial estimate of $M_{\rm BH}$

- $M_{\rm BH} = G^{-1} R_{\rm BLR} v_{\rm BLR}^{2}$
- $R_{\rm BLR} \sim IL_{I}^{a}$ (see Aaron's talk)
- $V_{\text{BLR}} = f$ FWHM

But...

- $R_{\rm BLR}$ — IL_{I} relations are poorly constrained
- Only the average value of *f* is known (*Labita et al. 2006, Collin et al. 2006, Decarli et al. 2008*)
- Radiation pressure => Underestimates of M_{BH} (Marconi et al. 2008, 2009 and Hagai, Shane, Moshe and Tigran's talks... but see also Netzer 2008)

Virial estimate of $M_{\rm BH}$

The host galaxy of high-z quasars

- In quasars, the nuclear light overwhelms the galaxy luminosity; the surface brightness is « (1+z)⁻⁴
- We use our Astronomical Image Decomposition and Analysis (AIDA) software in order to:
 - Model the PSF on the field stars;
 - Superimpose a nuclear point-like source to a galaxy model;
 - Convolve them with the PSF model and fit it to the observed quasar light profile.
- The host galaxy luminosity and morphology (according to the best-fitting galaxy model) are thus found.

$L_{\rm host}$ as a function of redshift

$M_{\rm host}$ as a function of redshift

The $M_{BH}-M_{host}$ ratio as a function of z

Decarli et al (in preparation)

Luminosity Function bias

- The scatter in the M_{BH}-M_{host} (L_{host}, s_{*}, etc) relation introduces a bias (Lauer et al., 2007).
- The steeper is the luminosity function, the larger is the bias.
- $\mathbb{W} \log M_{BH} = \mathbb{W}_{\mathbb{W}} (\mathbb{W}(M2) \mathbb{W}(M1)) / \int_{M1}^{M2} \mathbb{W}(M) dM$

Luminosity cuts

Contaminations from discdominated and/ or unresolved galaxies?

Radiation pressure?

Radio loudness

The $M_{\rm BH}$ – $M_{\rm host}$ ratio as a function of z

- We confirm the trend observed by *McLure et al.* (2006) for z<2 radio loud AGNs and extend it to 2<z<3 quasars, both for RLQs and RQQs
- Our results are also qualitatively in agreement with those by *Peng et al.* (2006) and *Woo et al.* (2006)

• SDSS1148+5251:

$$\begin{split} M_{\rm BH} &= 3 \cdot 10^9 \ {\rm M_o} \\ & (Barth \ et \ al. \ 2003) \\ M_{\rm dyn} &= 5 \cdot 10^{10} \ {\rm M_o} \\ & (Walter \ et \ al. \ 2004) \\ M_{\rm BH}/M_{\rm host} > 0.06 \\ \\ {\rm Extrapolating \ our \ result:} \\ M_{\rm BH}/M_{\rm host} &= 0.14 \end{split}$$

Conclusions

- We now probe the $M_{BH}-M_{host}$ relation up to z=3
- The $M_{\rm BH}/L_{\rm host}$ is almost constant up to z=3
- Once we correct for the evolution of the (fading) M/L ratio of the host galaxy stellar component, the $M_{BH}/M_{host} \equiv G$ ratio increases of a factor ~8 from z=0 to z=3
- Is the stellar *M/L* evolution correct?

Open questions

• What does it mean?

What about: M_{dyn}, s_{*}, the gas fraction, the DM component?
 (=> fundamental plane evolution...)

• What is the role of major/minor and dry/wet mergers?

• What about spiral galaxies?

... up to the afternoon talks!

The object of the month

• A z=8.1 GRB?

(Salvaterra et al., Tanvir et al.)

- Boroson & Lauer Jan, 23
 (SDSS)
- Chornock et al. Mar, 9 Gaskell Mar, 25
- Wrobel & Laor
- Decarli et al.
- Lauer & Boroson
- Chornock et al.
- Decarli et al. (VLT)

May, 25 (VLA) May, 27 (VLT) Jun, 2 (HST) Jun, 5 (KECK)

. . .

- The companion probably hosts an AGN
- The quasar lies in a galaxy cluster

Mact of its posuliar spectral features

