Evolution of Tidal disruption events discovered by XMM-Newton

Pilar Esquej

Stefanie Komossa, Andrew Read, Richard Saxton

University of Leicester Max-Planck-Institut für extraterrestrische Physik **European Space Astronomy Centre**

Physics of Galactic Nuclei - Schloss Ringberg June 2009

Outline

Introduction

> Tidal disruption events

- Theory
- Observational signatures & previous detections
- Candidates selection
- Follow-up observations
- Alternative scenarios
- Tidal disruption rate

Summary/Conclusions

The ubiquity of SMBHs

- The paradigm that the cores of most, if not all, galaxies are occupied by SMBHs was predicted long ago.
- Quasars were more abundant in the early Universe at $z \sim 2$ than at present, so dead quasar engines are expected to be enclosed in the nuclei of otherwise non-active galaxies.
- Alternatively to the stellar dynamics approach, an unavoidable consequence of the existence of remnant SMBHs at the nuclei of optically non-active galaxies is the detection of the *so-called* tidal disruption events.

Theory of Tidal disruption events

> A star orbiting a SMBH will be disrupted when approaching the BH tidal radius

 $R_T = \mu R_* \left(\frac{M_{BH}}{m}\right)^{1/3}$ (Rees 1988)

> The process is expected to happen up to $M_{BH} \sim 10^8 M_{sun}$ (for a solar mass star).

- Once disrupted, half of the stellar material is ejected and the remaining half will be bound, returning to pericentre and circularizing, a fraction of it will be accreted by the hole (~10%) (Ayal et al. 2000).
- > Flare of radiation beginning when the most bound material returns to pericentre.

$$T_{bb}(3r_s) = 7 \times 10^5 \left(\frac{M_{bh}}{10^6 M_{sun}}\right)^{1/4} K \sim 60 \ eV$$

Peak in soft X-rays!

- By equating the energy of the released gas to the specific orbital energy: Tmin. Aplying physics of Keplerian orbits: luminosity declines as t^{-5/3}

Observational Signatures

Giant amplitude UV/EUV/X-ray flare – black body of kT=40-100 eV. Identification based on the existence of two large area X-ray sky surveys of comparable sensitivities

> Peak Luminosity $L_x = 10^{42} - 10^{44} \text{ erg s}^{-1}$

(Komossa 2002)

 \succ Lasts a few weeks at peak luminosity and then falls off as t ^{-5/3}

Previous detections:

- > RX J1242.6-1119 (Komossa & Greiner 1999)
- > RX J1624.9+7554 (Grupe at al. 1999)
- > RX J1420.4+5334 (Greiner et al. 2000)
- > NGC 5905 (Komossa & Bade 1999)
- TDXFJ134730.3-325451 (Cappelluti et al. 2009)
- ➤ 3 Galex sources (Gezari et al. 2007, 2008, 2009)

NGC 5905 (Li et al. 2002)

XMM-Newton Slew Survey

EPIC-pn data:

soft 0.2-2 keV, hard 2-12 keV, total 0.2-12 keV

Sensitivity limits:

- Soft band: similar to RASS
- Hard band: deepest ever

ROSAT: composite image RASS-PSPC maps of the diffuse soft XRB in the 0.1-0.4keV (red), 0.5-0.9keV (green), 0.9-2keV (blue) (Freyberg & Egger 1999).

Source	L _{0.2-2keV} XMM/RASS-ul	<u> </u>
NGC 3599	88	5.1x
SDSS J132341.9+482701	83	4.8x2

Very soft sources (not detected in slew hard band) classified as normal galaxies, rough spectral shape as black body at kT=95 eV or power-law with $\Gamma \sim 3 \longrightarrow$ initial agreement with the tidal disruption model.

<u>s-1)</u> 10⁴¹ **10**⁴³

ROSAT: composite image RASS-PSPC maps of the diffuse soft XRB in the 0.1-0.4keV (red), 0.5-0.9keV (green), 0.9-2keV (blue) (Freyberg & Egger 1999). XMM-slew: color code from red (soft) to hard (blue).

Source	L _{0.2-2keV} XMM/RASS-ul	L _{0.2-2keV} (erg
NGC 3599	88	<u>5.1x</u>
SDSS J132341.9+482701	83	4.8x ²

Very soft sources (not detected in slew hard band) classified as normal galaxies, rough spectral shape as black body at kT=95 eV or power-law with $\Gamma \sim 3 \longrightarrow$ initial agreement with the tidal disruption model.

<u>s-1)</u> 10⁴¹ **10**⁴³

Follow-up

> Optical:

 Do post-outburst spectra show any evidence of the disruption event?

> X-rays:

- Is the temporal evolution following the t^{-5/3} law?
- Do sources harden in time?
- Is the detected X-ray emission coming from the nucleus?

Follow-up observations:

- Optical: NOT/INT
- X-ray: XMM-Newton (ToO) and Swift (Fill-in; PI: G.Hasinger). NGC 3599 recently observed with Chandra and XMM-Newton (PI: P.Esquej)

SDSS J1323

Optical post-outburst spectra did not show any evidence of the disruption event.

X-ray spectral analysis

- Bbody (kT=62eV) + Powerlaw (Γ=1.4)
- Hard tail detected
- Hard luminosity in low state is still higher than estimation from [OIII]-L₂₋ 10kev relationship (Netzer et al. 2006)

$$L_{\rm X} = 8.1(\pm 2.9) \times 10^{42} \left[\frac{t - 2003.56(\pm 0.10) \,\rm{yr}}{1 \,\rm{yr}} \right]^{-5/3}$$

- Bright source coincident with the centre of the optical position
- Faint off-nuclear source at 3 arcsec (300 pc)

Alternative scenarios

- Stellar objects: don't reach so high luminosities
- HMBX and supernovae: present strong hard X-ray emission and L_x up to 10⁴⁰ erg s⁻¹
- > X-ray afterglow of GRB: no detected and follows a t^{-1}
- Gravitational lensing event: same variability in optical and Xrays (no simultaneous observations)
- > ULX within NGC 3599: $L_x \sim 10^{39}$ -10⁴⁰ erg s⁻¹, flux variation of 2-3, power-law shape (Γ =1.6-1.8).
- Accretion disk instability.
- Variations in the intrinsic radiation, changes in covering factor of the absorbing gas.

Properties of tidal events							
Released energy:	$\Delta E_{\rm X} =$	$\int_t^\infty L_{\rm X}(t) dt$	1 <i>t</i> .				
Total accreted mass:	$\Delta M =$	$\frac{\Delta E}{\epsilon c^2} \approx \frac{\Delta E_{\Sigma}}{\epsilon c^2}$	<u><</u>				
Radius emitting regio	on: $R_{\rm X}=$	$\left(\frac{f_{\rm c}^4 L_{\rm X}}{\pi \sigma T_{\rm bb}^4}\right)^{1/2}$	(F	Ferrarese & Fo	ord 20		
Black hole mass: $M_{\rm BH} = 1.66(\pm 0.24) \times 10^8 M_{\odot} \left(\frac{\sigma}{200 {\rm km s^{-1}}}\right)^{4.86(\pm 0.43)}$							
Source	ΔE_x (erg)	$\Delta M (M_{sun})$	R _x (cm)	${ m M}_{ m BH}({ m M}_{ m sun})$			
NGC 3599	7.1 x 10 ⁴⁸	4.0 x 10 ⁻⁵	7.3 x 10 ¹¹	1.3 x 10 ⁶			
SDSS J1323	7.6 x 10 ⁵⁰	4.2 x 10 ⁻³	6.8 x 10 ¹²	2.2 x 10 ⁶			

> Theoretical tidal disruption rate is $\sim 10^{-4} - 10^{-5}$ yr⁻¹ (Wang & Merrit 2004), depending on the stellar density in the nuclear cusp and the SMBH mass.

$$\Gamma(M_{bh}) = 7 \times 10^{-4} \, yr^{-1} \left(\frac{\sigma}{70 \, km \, s^{-1}}\right)^{7/2} \left(\frac{M_{bh}}{10^6 \, M_{sun}}\right)^{-1} \left(\frac{m_*}{M_{sun}}\right)^{-1/3} \left(\frac{R_*}{R_{sun}}\right)^{1/4}$$

Observed disruption rate $\sim 10^{-5}$ yr⁻¹ (Donley et al. 2002).

> Tidal disruption rate from slew survey lies in agreement with previous theoretical and observational predictions!

Summary/Conclusions and future

- Tidal disruption candidates in high-state agree with previous detections, X-ray light curves declined as t^{-5/3} and no significant variation of optical spectra was observed (Ésquej et al. 2007) 2008).
- Closest observations to maximum in hard X-rays showing apparent hardening with respect to high-state.
- X-ray emission from SDSS J1323 in low-state does not seem to be AGN related
- Although some AGN-related scenarios can not be ruled out, specially for NGC 3599, the tidal disruption model is fully consistent with observations.
- Important as they are the unambiguous probe of the existence of SMBH in otherwise non-active galaxies. They may contribute to the BH growth over cosmic times and the faint end of the AGN luminosity function.
- Fast data processing of incoming slews to perform fast follow-up of high variable sources.
- Future missions will allow the detection of new events to be obtained
- Possible future detection of GWs with LISA