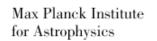
The growth of supermassive black holes in bulges and elliptical galaxies


Dimitri Gadotti

in collaboration with Guinevere Kauffmann

Max Planck Institute for Astrophysics

Outline

Work with two main observables:

- 1. M_{Bulge}
- 2. o

Outline

- Sample Selection
- Image Decompositions
- \bullet The $M_{\text{Bulge}}\text{-}\sigma$ Relation for Ellipticals and Bulges
 - Implications for the M_{BH} - σ and M_{BH} - M_{Bulge} relations
- Black Hole Demographics
 - Total BH mass density, BH mass distribution and budget
- Conclusions

Gadotti (2009 MNRAS 393, 1531) Gadotti & Kauffmann (arXiv:0811.4299)

Sample Selection

Database:

• *g*,*r*,*i* images from SDSS

 $HWHM \sim 750 pc$

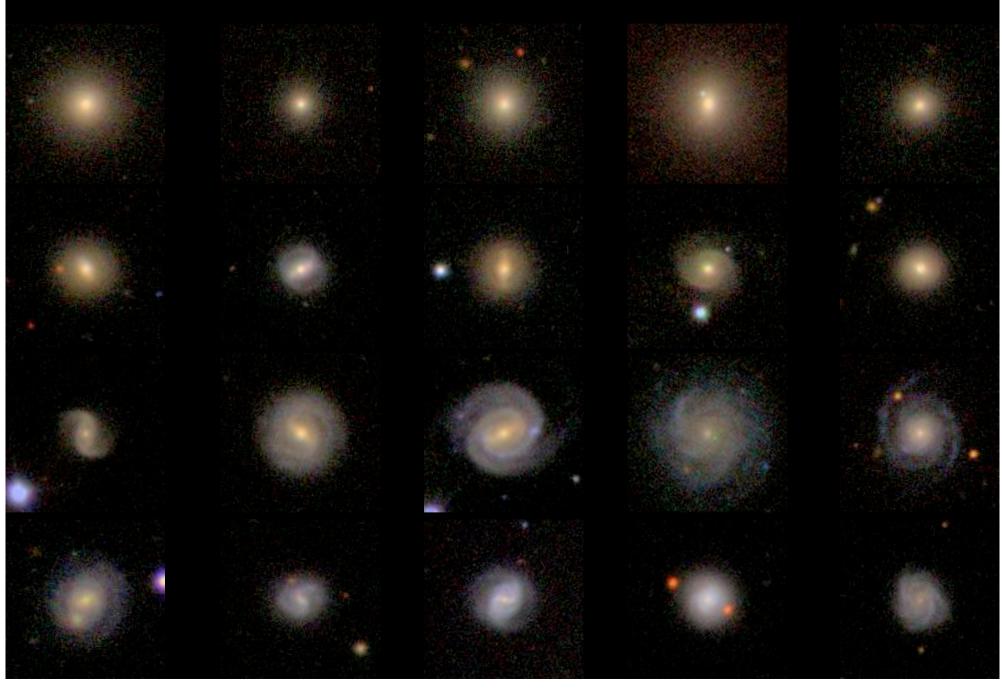
Criteria:

- $0.02 \le z \le 0.07$ (not too far, not too close typical z: 0.05)
- $M_* \ge 10^{10} M_{Sun}$ (no dwarves typical mass: MW)
- $b/a \ge 0.9$ (face-on galaxies, avoids dust, projection etc.)
- 3375 galaxies


Visual inspection to remove:

- not truly face-on
- ongoing interactions, mergers
- overly faint or irregular
- images not suitable (bright stars, close to edge, duplicates etc.)
- galaxies smaller than 8" in diameter (25 g-mag arcsec⁻²)

Final sample: 963 galaxies (407 AGN, mostly type 2)



Sample Selection

Image Decompositions

BUDDA v2.1 (de Souza et al. 04, Gadotti 08):

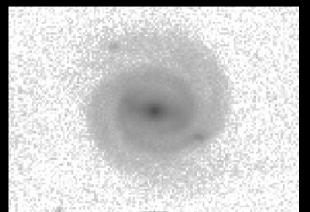
- 2D fitting using generalized ellipses (Athanassoula et al. 90)
- exponential disk (Freeman 70)
- Sérsic bulge (Sérsic 68)
- Sérsic bar

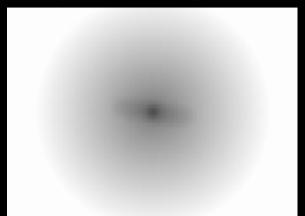
$$\left(\frac{|x|}{a}\right)^c + \left(\frac{|y|}{b}\right)^c = 1$$

Parameters:

- disk: μ_0 , h
- bulge: μ_e, r_e, n
- bar: $\mu_{e,Bar}$, $r_{e,Bar}$, n_{Bar} , L_B , c, ϵ
- B/T, D/T, Bar/T
- and relation between g-i and M/L from Kauffmann et al. (07)

$$\mu_d(r) = \mu_0 + 1.086r/h$$


• B/T, D/T, Bar/T
• M*: from total luminosity, g-i color and relation between g i and M/I
$$\mu_b(r) = \mu_e + c_n \left[\left(\frac{r}{r_e} \right)^{1/n} - 1 \right]$$



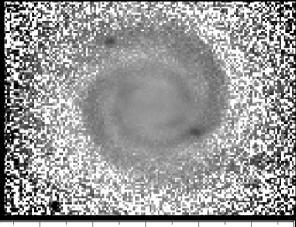
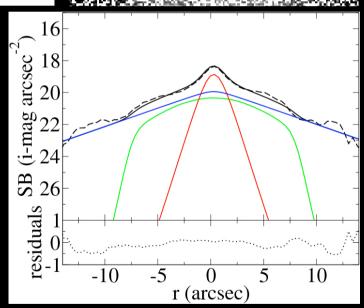
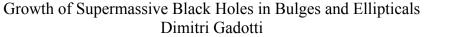


Image Decompositions

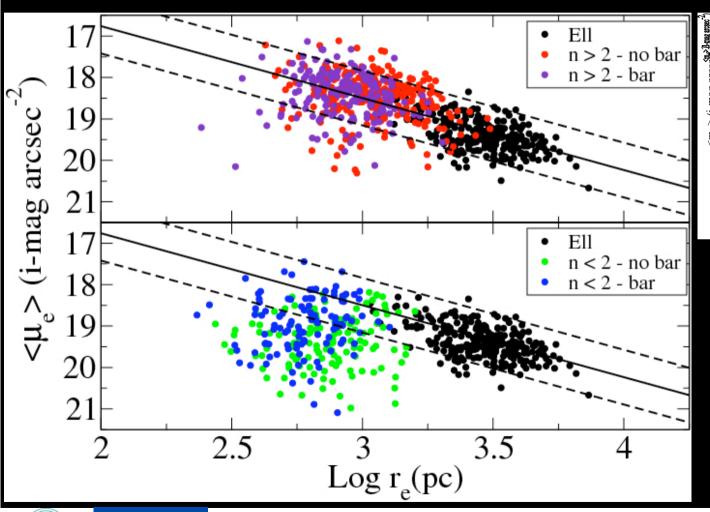


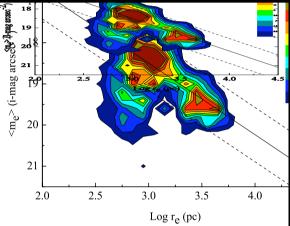
• Bar has to be modeled (Gadotti 08)!


- AGN light can be neglected
- All results available at

http://www.mpa-garching.mpg.de/~dimitri/buddaonsdss/buddaonsdss.html

Dimitri Gadotti

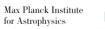




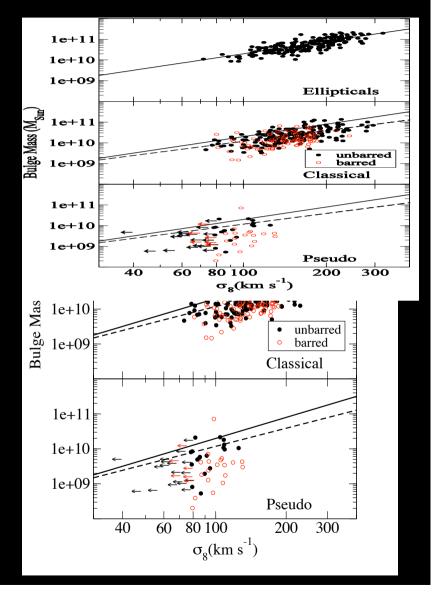
for Astrophysics

Identifying Pseudo-Bulges

Ellipticals and classical bulges follow Kormendy (77) relation, but pseudo-bulges seem not to (Carollo 99, Kormendy & Kennicutt 04, Fisher & Drory 08)

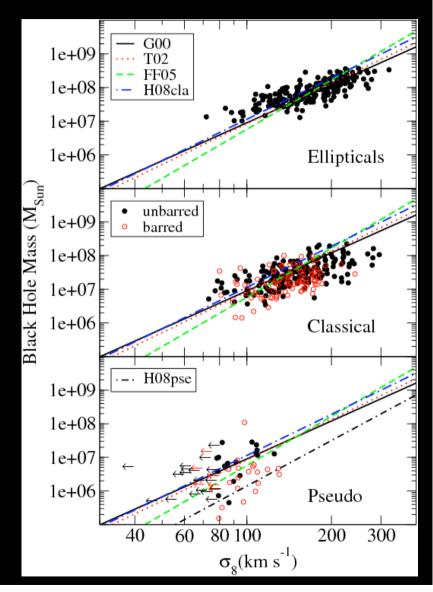


Disc-like bulges, not box/peanut bulges



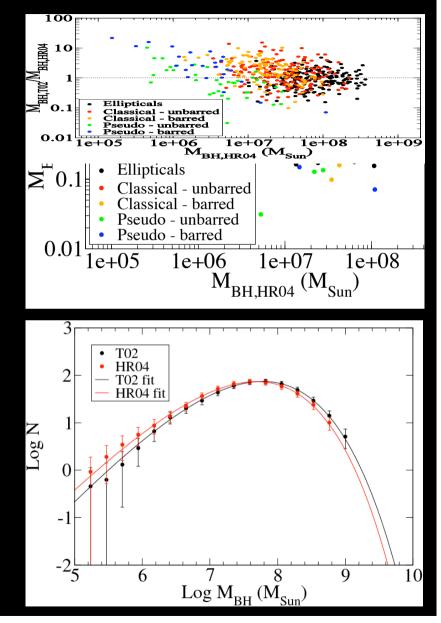
The M_{Bulge} - σ relation

- difference between ellipticals and classical bulges is a 3σ result
- some SDSS σ values are upper limits (those below 70 km/s)
- deviation of pseudo-bulges seems to be mostly due to barred galaxies



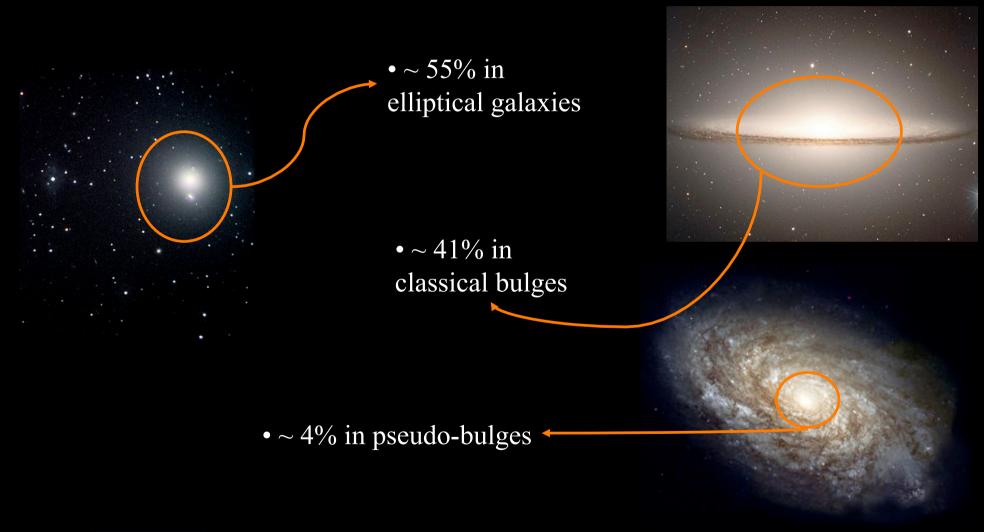
The M_{BH} - σ relation

- using M_{BH}-M_{Bulge} from Häring & Rix (04)
- G00: Gebhardt et al. (00); T02: Tremaine et al. (02); FF05: Ferrarese & Ford (05); H08cla: Hu (08 classical); Hu08pse: Hu (08 pseudo)
- There cannot be single M_{BH} - M_{Bulge} and M_{BH} - σ relations
- again (obviously!) deviation of pseudobulges is mostly due to barred galaxies (see also Graham 08, Graham & Li 09)



Total Black Hole Mass Density and Distribution at $z \sim 0$

- total BH mass density is 25-55 per cent larger using M_{BH} - σ compared to M_{BH} - M_{Bulge} (Tremaine et al. 02)
- scatter taken into account



The Black Hole Mass Budget at $z \sim 0$

(For galaxies with $M_* \ge 10^{10} M_{Sun}$)

• using M_{BH}-M_{Bulge} from Häring & Rix (04):

Conclusions

(or what you should take with you)

- 1. There is evidence of different $M_{\rm Bulge}$ - σ relations for ellipticals and bulges.
- 2. There can not be single M_{BH} - M_{Bulge} and M_{BH} - σ relations for ellipticals and bulges.

Different back hole growth modes?

3. Deviation of pseudo-bulges from the M_{Bulge} - σ relation seems to be caused by bars.

Perhaps barred galaxies have to be treated differently...

