#### Magnetic Fields in Large-scale Jets

Volker Gaibler Theoretical Structure Formation Group MPE Garching

Max Camenzind (LSW Heidelberg) Martin Krause (MPE Garching) Sadegh Khochfar (MPE Garching)



#### Outline

#### Jet – Galaxy/ISM interaction

- X-ray cavities
- Turbulent cocoons
- Efficient thermalization
- Magnetic fields: stabilization & amplification of fields
- Ongoing work

*most results:* Gaibler, Krause, Camenzind (submitted to MNRAS, 2009)

## Why Jets?

- Massive elliptical galaxies formed already at high redshift Most massive SMBH also form early
- Can AGN feedback get it done?
  - quench star formation in massive ellipticals (negative feedback)
  - trigger star formation by jet activity (positive feedback)
- > Open questions (cf. Joe Silk's talk):
  - star formation efficiency depends on turbulence in ISM
  - magnetic fields important to regulate SF
  - evidence for jet-triggered star formation: is that an option for early and strong SF?

 $\rightarrow$  Jet feedback has to be examined in detail (resolved!)

#### Jet – Galaxy Interaction

well-collimated beams

only minor interaction with galaxy once they broke out???



Cyg A @ 5 GHz Perley+ 1984 (with giant elliptical overlay, M87)

### Jet – Galaxy Interaction

well-collimated beams

only minor interaction with galaxy once they broke out???



No!

Whole galaxy contained in cocoon

Cyg A @ 5 GHz Perley+ 1984

Cyg A @ 327 MHz contour overlay Lazio+ 2006

# High-z Radio Galaxies

- Extended Emission Line Regions aligned with jets
- Outflows
- Highly turbulent motion (~ 1000 km/s)



#### Nesvadba+ 2008

# Morphology



Volker Gaibler: Magnetized AGN Jets

R

#### **Ambient Gas & Cavities**

- Thermal ambient gas: ICM in bremsstrahlung
- Cavities: ambient gas displaced by cocoon
- Relativistic particles synchrotron & inverse compton (beam and cocoon)







MS0735 at z=0.22 (Chandra)

#### Jets and Cavities



Cygnus A (Wilson/Carilli/Perley) z=0.0561 enthalpy 3 x 10<sup>60</sup> erg power 1.3 x 10<sup>45</sup> erg/s Perseus A (Fabian+ 2006) z=0.0183pV ~ 2 x 10<sup>59</sup> erg power 10<sup>44-45</sup> erg/s



# Very Light Jets

> Important: Density contrast:  $\eta = \rho_{jet} / \rho_{ambient}$ 

*our study:* 10<sup>-1</sup> ... 10<sup>-4</sup> *under-dense* jets

AGN jets:

despite their power very underdense on large scales!

- mildly relativistic speeds of the beam plasma
- but propagation much slower than jet speed
- strong backflow
- wide cocoons (Norman+ 1983)
- Estimate jet densities:
  - jet power, mass flux and jet speed
  - comparison to Eddington accretion limit
  - hotspot pressures (ram pressure)
  - propagation speeds

generally  $\eta < 10^{-2}$ 

### **Density Contrast**

"Light"

η = 10<sup>-3</sup>

"Heavy"  $\eta = 10^{-1}$ 



-60 -40 -20 0 20 40 60 X [kpc] 2 keV log flux -4.54 -4.52 -4.50 -4.48 -4.46 -4.44 -4.42 -4.40

#### Cocoon Pressure



### Jet – Galaxy Interaction

well-collimated beams

only minor interaction with galaxy once they broke out???



No!

Whole galaxy contained in cocoon

Cyg A @ 5 GHz Perley+ 1984

Cyg A @ 327 MHz contour overlay Lazio+ 2006

### **Cocoon Turbulence**

strong backflow

- highly turbulent cocoon!
- interaction with ISM
- Creation of multi-phase turbulence in cocoon (M. Krause)



#### [animation]

### Cocoon Turbulence



waves and ripples in Perseus A Fabian+ 2006

pressure map

> travelling sound waves in shocked ambient gas

- weak bow shock softly turns into sound wave!
- dissipation / heating?

# Energy Budget

- light jets:
  high thermalization efficiency
  hot radio plasma cavity
  & heated ambient gas (hot phase)
- thermalization ~ 80% (half cocoon, half ambient) Zanni+ 2005: up to 75% irreversibly dissipated
- several percent of total power contained in cocoon turbulence may stir up ISM





## Location of the Emission Line Gas



O III FWHM km/s

project with N. Nesvadba

multi-phase medium simulations: Martin Krause



Volker Gaibler: Magnetized AGN Jets

## Magnetic Fields

- Why magnetic fields?
  - synchrotron emission  $\rightarrow$  they must be there!
  - what is their effect?
- Topology:
  - infer from polarization measurements
  - mostly axial in beam, perpendicular at hotspots
  - stretched tangled fields? helical fields?
- Assume helical fields
  - effects found should also be relevant for tangled fields
  - resolve magnetic field structure well
  - magnetic field confined to jet (by setup)
  - sub-equipartition

### **Magnetic Fields: Stabilization**

- M3: plasma beta = 8.1 (injected)
- comparison
  HD MHD
  - damp KH shear instability (field lines resist bending)
  - less entrainment
  - stabilization in cocoon not enough?



#### M3 density

#### Step 1: Beam Rotation

#### initially: beam has no rotation, but helical field

 plasma rotation:
 "MHD angular momentum conservation" (exchange of magnetic field and plasma angular momentum)



## Step 2: Shearing and Field Generation

- backflow:
  plasma streams
  off the axis
- angular momentum conservation: differential rotation
- Shearing: kinetic → magnetic amplifies fields



#### Magnetic Field Magnitude

COCOON:

much stronger fields than expected from flux conservation

expectation in 3D: also strong fields, but balance poloidal/toroidal, turbulent distribution of magnetic fields in cocoon



# **Poloidal Magnetic Field**

- strong in beam
- highly turbulent
- ▶ poloidal component artificially weak in 2.5Dcocoons → 3D



# The Question of Equipartition

- often assumed: equipartition between magnetic field and relativistic particles
- here:
  check magnetic field and plasma pressure (plasma beta)
- beam: beta constant across shocks
- cocoon: spread



# **Ongoing Work**

- Physical mechanism examined by axisymmetric simulations
- > 3D simulations of jets in clumpy medium for extended emission line regions in HzRG
- Interaction with cosmological environment Self-consistent evolution of jet activity (accretion, spin, ...)





#### Summary

- cocoon turbulence excites sound waves, interactionwith ISM thermalization very efficient for very light jets
- magnetic fields stabilize jet head, suppress entrainment
- helical fields & shearing generate magnetic energy: damp KH instability and magnetize cocoon
- > 3D simulations necessary for realistic turbulent interaction with ISM and cosmological environment