

Equal- and unequal-mass mergers of disk and elliptical galaxies with black holes

Peter Johansson University Observatory Munich

Physics of Galactic Nuclei workshop June 15th-19th 2009 Ringberg, June 18th, 2009

Johansson, Naab, Burkert, 2009, ApJ, 690, 802

The role of AGN feedback

- 1) Observed relic supermassive black holes quasars.
- 2) Observed ULIRGs, merging galaxies with intense starburst and/or AGN activity.
- 3) The observed M_{BH}-σ & M_{BH}-M_{BULGE} relations. The coeval growth of black holes and galaxy bulges.
- Simplified feedback energetics: SN/AGN- energy coupling/ location:
- Supernova II feedback

Salpeter IMF $\Rightarrow 1$ SN/125M $_{\odot}$ of 10^{51} ergs $\rightarrow E_{SNII} \sim 5 \cdot 10^{48}$ erg $/M_{\odot}$

$$\Rightarrow (\Delta E)_{\rm FB,SNII} \sim 2.8 \cdot 10^{-6} m_{\star} c^2$$

• AGN feedback

 $m_{BH}/m_{\star} = 10^{-3}, \ \Delta E_{\rm rad}/m_{BH}c^2 = 10^{-1}, \ \Delta E_{\rm BH}/\Delta E_{\rm rad} = 5\cdot 10^{-2}$ LMU

$$\Rightarrow (\Delta E)_{\rm FB,AGN} \sim 5 \cdot 10^{-6} m_{\star} c^2$$

BH feedback model: Accretion

- The Schwarzschild radius of a SMBH with M~10⁷ M_{sun} is R_S~10⁻⁶ pc. Numerical Galaxy simulations at best resolve details down ~10 pc
 -> effective subresolution model.
- Use the Tree-SPH GADGET-2 code (Springel et al. 2005) with cooling +SF+SN feedback+BH feedback based on a Bondi-Hoyle accretion model (Bondi 1952):

$$\begin{split} r_B &= \frac{GM_{\rm BH}}{c_\infty^2} = 50 {\rm pc} \left(\frac{{\rm M}_{\rm BH}}{10^7 {\rm M}_\odot}\right) \left(\frac{{\rm c}_\infty}{30 {\rm km/s}}\right)^{-2} \\ \dot{M}_B &= \frac{4\pi \alpha G^2 M_{\rm BH}^2 \rho}{(c_s^2 + v^2)^{3/2}} \quad \alpha \sim 100 \\ \dot{M}_{\rm Edd} &= \frac{4\pi GM_{\rm BH} m_{\rm p}}{\epsilon_r \sigma_T c} \\ \dot{M}_{\rm BH} &= \min(\dot{{\rm M}}_{\rm Edd}, \dot{{\rm M}}_{\rm B}) \end{split}$$

BH feedback model: Energetics

• The radiative efficiency $\varepsilon_r \sim 0.1$ (Sunyaev&Shakura 1973) and the thermal coupling $\varepsilon_f \sim 0.05$ resulting in a total BH feedback energy efficiency of = 0.5%.

$$\epsilon_r = \frac{L_r}{\dot{M}_{\rm BH}c^2} = 0.1 \quad \dot{E}_{\rm feed} = \epsilon_f L_r = \epsilon_f \epsilon_r \dot{M}_{\rm BH}c^2, \epsilon_f \sim 0.05$$

- The SPH kernel is used to calculate the average gas density, temperature as well as the gas bulk velocity relative to the BH.
- The BH mass grows stochastically by absorption of gas particles, include also smooth internal black hole mass, which is used to determine the accretion rate.
- BHs will merge instantly if they come within a smoothing length and if their relative velocity is smaller than the local soundspeed.
- Thermal FB energy distributed weighted within the SPH kernel.

LMU

ันรท

Model setup and BHs in isolated galaxies

- Using the Springel (2000) method based on Hernquist (1993) we setup disk galaxies with Hernquist DM profiles+bulges& exponential discs with fgas=20%, 40%, 80%.
- The BH is initially at rest in the centre of each model galaxy with a seed mass of 10⁵ M_{sun}.
- We simulate a sample of isolated galaxies, 1:1 and 3:1 mergers, dry E-E and mixed E-Sp mergers.

Numerical techniques ensuring BH merging

700

600

500

400

300 200

100

10⁰

 10^{-1}

10⁻²

 10^{-3}

10-4

 10^{-5} 10^{-6}

0.0

0.5

BHAR $[M_{\odot} \text{ yr}^{-1}]$

Standard

1.0 1.5 2.0

Time [Gyr]

Repos

 $\Delta v [km/s]$

2.5 3.0

Standard

Repos

mergers.
For unequal-mass mergers 'repositioning' of the BHs at the position of the minimum of the potential.

• The momentum is

conserved in BH

 The standard prescription is adequate for equalmass mergers.

3:1 merger movie

Varying the initial gas fraction and orbit

- Variations in the initial gas mass fraction produce large differences in the final BH mass, 20%, 40%, 80%.
- Variations in orbital geometry for a fixed initial gas mass fraction produce small differences in the final BH mass, shades of blue.

USM

BH accretion as a function of merger mass ratio

M_{BH} - $\sigma \& M_{BH}$ - M_* relations for 3:1 and 1:1 mergers

Table 4: Best fit $M_{\rm BH} - \sigma$ relation for 3:1 and 1:1 mergers

Sample	Ν	a	ь	$\Delta_{\log M_{\rm BH}}$
Tot sample	36	8.07 ± 0.06	3.82 ± 0.15	0.29
3:1 sample	18	8.06 ± 0.08	3.78 ± 0.18	0.33
1:1 sample	18	8.05 ± 0.07	3.77 ± 0.18	0.26
S1-S2 20% gas sample	10	7.85 ± 0.04	3.47 ± 0.12	0.13
S1-S2 40% gas sample	10	8.13 ± 0.05	3.96 ± 0.13	0.14
S1-S2 80% gas sample	10	8.35 ± 0.10	3.77 ± 0.28	0.29
Observed sample ¹⁸	31	8.13 ± 0.06	4.02 ± 0.32	0.25-0.3

Table 5: Best fit $M_{\rm BH}-M_{*}$ relation for 3:1 and 1:1 mergers

~	The Magazine and the magazine							
	Sample	Ν	с	d	$\Delta_{\log M_{\rm BH}}$			
	Tot sample	36	8.17 ± 0.10	1.40 ± 0.07	0.44			
	3:1 sample	18	8.04 ± 0.11	1.34 ± 0.08	0.47			
	1:1 sample	18	8.24 ± 0.10	1.41 ± 0.10	0.38			
	S1-S2 20% gas sample	10	7.86 ± 0.07	1.34 ± 0.05	0.17			
	S1-S2 40% gas sample	10	8.28 ± 0.08	1.45 ± 0.06	0.22			
	S1-S2 80% gas sample	10	8.68 ± 0.13	1.36 ± 0.12	0.29			
	Observed sample ¹⁹	30	8.20 ± 0.10	1.12 ± 0.06	0.30			

Lines: Observed relations - Tremaine et al. (2002) and Häring&Rix (2004).

SFR&BH accretion for mixed and dry mergers

3.0

M_{BH} - $\sigma \& M_{BH}$ - M_* relations for mixed mergers

Table 7: Best fit $M_{\rm BH} - \sigma$ relation for E-E and E-Sp mergers

Sample	Ν	a	ь	$\Delta_{\log M_{\rm BH}}$
Progenitor sample	16	7.83 ± 0.04	3.53 ± 0.11	0.16
E-Sp Mixed sample	16	8.03 ± 0.04	3.55 ± 0.12	0.13
E-E Remerger sample	16	8.13 ± 0.05	3.41 ± 0.10	0.18

M_{BH} - $\sigma \& M_{BH}$ - M_* relations for dry mergers

Table 8:	Best fit	$M_{\rm BH} -$	M_{*}	relation	for H	E-Sp	and	E-E	mergers
----------	----------	----------------	---------	----------	-------	------	-----	-----	---------

Sample	Ν	с	d	$\Delta_{\log M_{\rm BH}}$
Progenitor sample	16	7.78 ± 0.07	1.35 ± 0.05	0.21
E-Sp Mixed sample	16	7.83 ± 0.05	1.39 ± 0.07	0.16
E-E Remerger sample	16	7.86 ± 0.05	1.38 ± 0.04	0.17

BHFP for disk and elliptical mergers

- Black hole fundamental plane (BHFP, Hopkins et al. 2007) $M_{BH} \sim \sigma^{3.0\pm0.3} R^{0.43\pm0.19}$ or $M_{BH} \sim M_*^{0.54\pm0.54} \sigma^{2.2\pm0.5}$.
- Statistically equivalent formulation M_{BH} - E_{bind} , E_{bind} ~ $M_*\sigma^2$.
- Lines: Observed relation from Hopkins et al. 2007: $log(M_{BH}/M_{sun})=8.23\pm0.06+(0.71\pm0.06)log(M_*\sigma^2/M_0\sigma_0^2)$

Evolution of BH towards the M_{BH} - σ relation

 High-res simulations of 1:1 and 3:1 mergers starting below the relation, on the relation and above the relation with α=25.

Conclusions/Summary

- The simple BH accretion/feedback model works remarkably well in reproducing the observed M_{BH}-σ, M_{BH}-M_{BULGE} & M_{BH}-E_{bind} relation for equal, unequal, E-E dry and mixed mergers.
- The relation is the result of large-scale gas flows to the center of the galaxy and the self-regulation of M_{BH} due to feedback energy.
- Star formation is efficiently terminated in low merger ratio Sp-Sp mergers (≤3:1) and in mixed and dry mergers.
- The global properties of the galaxy are insensitive to the details of the BH feedback model, but what about the detailed properties? Surface density profiles, kinematics, orbits...
- Potential model improvements: Include spin of the BH, more physical accretion model, quasar mode vs. radio mode, jets....

