Radiation Pressure and Turbulence in AGN Tori

Martin Krause with Marc Schartmann, Andreas Burkert & Max Camenzind Physics of Galactic Nuclei – Ringberg, June 2009

Overview

 Radiative and kinetic energy in the ISM
 The literature the geometrical thickness problem the importance of radiation pressure A toy model for radiative interactions enhanced elasticity radiatively driven turbulence

Multi-phase turbulence: radiative versus kinetic

Extended Narrow Line Regions

Simulation:

- hydro (grid) + o.thin cooling
 contains all three phases (rel., hot, cold)
- e.g. Krause & Alexander 2007
 Results:
- EL-gas survives stirring
- Phase equilibrium depends on energy in box
- Decay due to shocks/radiation

0406-242: z=2.4, [OIII], Hβ, >10¹⁰ M∳, v≈1000 km/ s (Nesvadba et al. 2008)

massive star forming galaxies
at z = 2-5
gas expelled permanently by
jet feedback
Radiative decay, 100 Myr

Evolves towards equilibrium, i.e. produces radiation by reducing turbulent energy

Multi-phase turbulence: radiative versus kinetic

Figure 1. Results of MIDI observations of NGC 1068. (a) Total flux $F_{tot}(\lambda)$: the contribution of the hot component is shown in red, that of the extended component in blue. (b) Correlated flux $F_{corr}(\lambda)$ obtained with a 40-m baseline orientated along position angle P. A. = 36°. The red dotted line gives the model fit and the blue shaded area shows the contribution of the extended component. (c) $F_{corr}(\lambda)$ for 52 m baseline along P. A. = 112°. (d) $F_{corr}(\lambda)$ for 97 m baseline along P. A. = 36°. The comparison between (b) and (c) shows that the hot component is more extended (better resolved) in SE–NW direction.

Geometry known: example: NGC 1068

IRinterferometry

🛛 size: 1pc

Shape: torus

ø hot interior

cooler outskirts

← Meisenheimer et al. 2008 →

Figure 2. Observational model of the dust torus in NGC 1068. A hot component (yellow) is embedded in an extended cooler component (brown). The orientation of the radio axis is indicated by a purple dotted line and the blue wedge gives the open-ing angle of the ionisation cone, observed on 100-pc scales.

The literature

Krolik & Begelman 1988

obs: h/r≈0.7 & dust, => v≈100km/s, if thermal => no dust, =>
 clumpy

inner edge: sublimation radius

I cloud merger & tidal shear => cov.fac.>≈1, size dist., N≈10²⁴ cm⁻² @ Jeans limit

accretion due to cloud-cloud collisions => reduces scale height => thin disc

stirring by stellar processes not enough

suggestion: ellastic clouds, i.e there are no hard collisions, due to magnetic fields

The literature

- Beckert & Duschl 2004
 - accretion torus model, viscosity due to cloud-cloud collisions
 - relies on magnetic field model to produce sufficient vertical turbulence
- Hönig & Beckert 2007
 - Second Stress Stress
 - *∞* consistent with $\theta \propto 1/L$ (receeding torus model)
 - still imply magnetic clouds to isotropize motions

The literature

Pier & Krolik 1992

radiation pressure dominates over central gravity in the hot dust region

Inctuating part of radiation force might drive turbulence

Krolik 2007, Shi & Krolik 2008

magnetic cloud model: "required field strenghts are not terribly plausible"

self-consistent solutions, IR-radiation pressure supported torus

Krolik et al 2007, Blaes et al 2007

MRI turbulent disk increase scale height by radiation pressure

May the radiation force drive turbulence or make the clouds elastic?

- toy model -

A nice new formalism: radiative potential

$$\mathbf{F}_{\rm ij} = \frac{L_{\rm j}}{4\pi r_{\rm ij}^2 c} \pi R_{\rm i}^2 \mathbf{e}_{\rm ij},$$

$$\tilde{m_{\rm i}} = \sqrt{\frac{\pi\sigma}{cG}} T^2 R_{\rm i}^2,$$

$$\mathbf{F}_{\mathrm{ij}} = G rac{ ilde{m}_{\mathrm{i}} ilde{m}_{\mathrm{j}}}{r_{\mathrm{ij}}^2} \mathbf{e}_{\mathrm{ij}},$$

$$E_{\rm pot} = G \frac{\tilde{m}_{\rm i} \tilde{m}_{\rm j}}{r_{\rm ij}^2}.$$

two clouds i,j
force ~ 1/r²
introduce radiative mass
symmetric material

symmetric material properties

here: optically thick

analogy: gravity

Two cloud system (uniform clouds)

$$\frac{1}{2}mv_{\rm c}^2 = G\frac{\tilde{m}\tilde{m}}{R}$$
$$\frac{\tilde{m}}{m} = \frac{3}{4}\sqrt{\frac{\sigma}{\pi c G}}\frac{T^2}{\rho R}$$

$$= 2,300 \left(\frac{T}{1000 \,\mathrm{K}}\right)^2 \left(\frac{\rho}{10^{-17} \,\mathrm{g \, cm^{-3}}}\right)^{-1} \left(\frac{R}{10^{-3} \,\mathrm{pc}}\right)^{-1}$$

approaching
 clouds bounce
 like protons

require v>vc for direkt hit

/2

$$v_{\rm c} = \sqrt{\frac{3\sigma}{2c}} \frac{T^2}{\rho^{1/2}}$$

= 168 km s⁻¹ $\left(\frac{T}{1000 \text{ K}}\right)^2 \left(\frac{\rho}{10^{-17} \text{ g cm}^{-3}}\right)^{-1}$

Optically thick cloud ensemble

$$\lambda n_{\rm cl} \pi R^2 = 1,$$

$$N = n_{
m cl} (4/3) \pi \lambda^3 = (4/3)^3 f^{-2},$$

$$E_{
m pot}(r) = \int_{0}^{\infty} G rac{ ilde{
ho}(r') 4 \pi r'^2 dr'}{(r-r')^2}$$

Define horizon λ (=mean free path)

filling factor f small (clumpy)
 => number of clouds within
 λ is large

all clouds within sphere (λ)
 interact with origin

may define radiative mass density

From shell potential, force within smooth shells = 0

Optically thick cloud ensemble

 Two body interactions dominate

 \odot Virial theorem: 2T= Δ E

$$\textcircled{o}$$
 =>> $v_{
m rms} = \sqrt{rac{1-f^{1/3}}{2}}v_{
m c}$

 $\Delta E = G ilde{m}^2 \left(rac{1}{R} - rac{1}{ar{d}}
ight) = G rac{ ilde{m}^2}{R} (1 - f^{1/3})$

Other cloud types

- Easily find cloud parameters where radiation dominates over cloud gravity
- All examined cloud models in principle permit rmsvelocities > 100 km/s @ T(dust) = 1000K
- Opt. thin dusty clouds unstable against own radiation pressure @ T> 30K

Figure 2. Radiative mass and critical velocity for reference clouds (uniform optically thick: $R = 10^{-3}$ pc, $\rho = 10^{-17}$ g cm⁻³, self-gravitating optically thick: $R = 2 \times 10^{-2}$ pc, $c_{\rm s} = 1$ km s⁻¹, optically thin: $R = 10^{-2}$ pc, $\rho = 10^{-21}$ g cm⁻³).

Conclusions

Rarely find E_{rad} > E_{kin}

- In torus & BLR: $E_{rad} ≈ E_{kin}$
- In BLR radiation pressure thought to be important
- Presented toy model of fluctuating radiation force
- For reasonable cloud parameters, find

enhanced elasticity

turbulence > 100 km/s

acloud = 0.001pc rho = 3.e-17 g/cm^3 Tsub = 1000K Mbh = 7.9d6 Msun eddratio = 0.005 n_clouds = 5000

