THE BLACK HOLE TAKES AND THE BLACK HOLE GIVES.....

with Kris Beckwith, Omer Blaes, Shane Davis, John Hawley, Shigenobu Hirose, Scott Noble

A Central Engine As Some Imagine It

A Central Engine as Others See It

.

.

Key Ingredient: MHD Turbulence

Magneto-rotational instability \rightarrow

MHD turbulence in disk;

(large-scale magnetic field) or (inflation of internal turbulent fields) \rightarrow

relativistic jet

How Exactly Do Outputs Work?

- MHD turbulence dissipates into heat, thence to radiation, but radial profile?
 - total efficiency \rightarrow mass budget?
 - thermal vs. coronal?
- Jet regulation
 - black hole spin? magnetic field?

Essential Device: Numerical Simulation

Stratified shearing-boxes

"rectangular" annular segment

study turbulent cascade; radiation transport, forces Newtonian, ideal MHD, real EOS, flux-limited diffusion

Global disks

study global structure, radial gradients, jets full GR in Kerr metric; primitive thermodynamics

Disk Dissipation and Total Radiative Output

Dissipation: Time-Averagd Local View

Magnetic reconnection, shear viscosity, shocks

Turbulence Makes Local Energy Content Fluctuate

Dissipation: Global View

A proxy: $|J|^2$

Dissipation: Another Global View

Bound matter only, toy-model cooling function

fluid-frame emissivity

full GR ray-tracing, Doppler shifts

Time-Average Emissivity Radial Profile

fluid-frame surface brightness

luminosity at infinity

Light-Curve Fluctuations

Result: power-law power spectrum, index ~ -2

- -2.0
- -2.1
- -2.2
- -2.3
- -2.4
- -2.5
- -2.6
- -2.7

Total Efficiency

Novikov-Thorne nominal efficiency for a/M = 0.9: 0.155 N-T after photon capture, Doppler shifts: 0.143

Explicit calculation for a/M = 0.9, with photon capture, Doppler shifts: 0.151 Unradiated heat at ISCO: 0.02 Magnetic energy/rest-mass at ISCO: 0.03

Disk Structure and Emitted Spectrum

Thermal Spectrum: the Disk Atmosphere

Midplane always turbulent, pressure-dominated; corona always laminar, magnetically-dominated

Magnetized Corona Alters the Photosphere

stellar-mass black holes, not AGN

Magnetized Corona Alters Polarization

Fluctuations in Faraday rotation wash out polarization

Where is Coronal Heating Strong?

Implications of Detailed Coronal Data

Known heating rate, location, velocity → physically-based prediction of hard X-ray emissivity, illumination of disk

Disk Physics – Light Output Connections

- Departures from LTE in time-averaged thermal spectrum
- Higher characteristic temperature than traditional • predictions
- Power-law power spectrum of coronal fluctuations
- Location and motion of sources for coronal photons? \rightarrow predict Fe K α profile
- Less mass required for emitted energy

Jets

Large-Scale Field Arises Spontaneously from Small-Scale Dipolar Field

McKinney & Gammie 2004

Hirose et al. 2004

Jets Can Be Strong and Variable

Cf. Blandford & Znajek 1976; McKinney & Gammie 2004

Significant Energy Efficiency from Internal Dipole Field with Rapid Spin

$$\eta_x = E/M_{acc}$$

a/M	$ig \eta_{\scriptscriptstyle EM}$	$\eta_{\scriptscriptstyle NT}$
-0.9	0.023	0.039
0.0	0.0003	0.057
0.5	0.0063	0.081
0.9	0.046	0.16
0.93	0.038	0.17
0.95	0.072	0.18
0.99	0.21	0.26

But Field Geometry Matters

Quadrupolar (or smaller dipolar loop) field geometry makes reconnection easier, leading to episodic, overall weaker jets

Rule-of-thumb: vertical field must retain a consistent sign for at least ~1500M to drive a strong jet

2,00

1.00

0.00

-1,00

-2,00

Large-scale Magnetic Flux Accumulated Non-Diffusively

Implications for Jet Output

Jet power controlled by: black hole spin internal field topology history of large-scale field feeding/disk pressure

Summary

- MHD simulations adding much to physical understanding of central engines
- And also potentially to understanding their outputs:
 - shape of thermal disk spectrum
 strength of coronal emission
 disk illumination
 variability
 accretion efficiency
 jet strength