A New Secular Instability in Eccentric Stellar Disks around Massive Black Holes

Madigan et al. 2009 (ApJL)

Ann-Marie Madigan Yuri Levin & Clovis Hopman

Outline

Introduction to Galactic Centre

- Motivation
- Physics of Instability
 - Simulations

Galactic Centre

Credit: ESO/S. Gillessen et al. 2009

Galactic Centre

2 Puzzles...

Bartko et al. (2009)

(1) Bimodal eccentricity distribution of disk stars

Age of disk ~ 6 Myr Relaxation time ~ 1 Gyr

(2) Origin of S-stars

- In-situ formation imes
- Youth: Did not travel far from place of birth

Setup

Bonnell & Rice 2008

Assumptions:

1) M_{disk} << M_{cusp}

Precession

Retrograde Precession due to cusp:

 $t_{prec}(a,e) \sim [M_{\bullet}/M_{cusp}(<a)] t_{orb}(a) f(e)$

$$\begin{split} \rho_{\text{cusp}} &\propto a^{-\gamma}, \, M_{\text{cusp}}(<\!\!a) &\propto a^{3-\gamma} \\ t_{\text{orb}}(a) &\propto a^{3/2} \\ t_{\text{prec}} &\sim a^{\gamma-3/2} \, f(e) \end{split}$$

Fastest for low e orbits Slowest for high e orbits

- 1. Higher e orbit precesses slower than other orbits
- 2. Feels strong, coherent torque from other stars in disk in opposite direction of angular momentum L
- 3. L is decreased, e is increased

Instability (4) $L \propto (1 - e^2)^{1/2}$ $L = r \times v$ $\mathbf{T} = \mathbf{r} \times \mathbf{F}$

- 1. Lower e orbit precesses faster than other orbits
- 2. Feels strong, coherent torque from other stars in disk *in direction of angular momentum L*
- 3. L is increased, e is decreased

Simulations

Relaxation time ~ 1 Gyr

Evolution of ē

Evolution of ē

Observed vs Simulated Eccentricity Distribution

direct consequence of instability

Origin of S-stars

Instability in disk pushes binary system to high eccentricity orbit.

Binary system is disrupted (Hills' [1988] Mechanism) forming: (1) hyper-velocity star (2) bound high-eccentricity star = **S-star**?

Summary

1) New Instability in Eccentric Stellar Discs

- > Time-scale: Myr
- > Robust

2) Application to Galactic Centre:

- > Bimodal eccentricity distribution
- > Origin of S-star population?

Ann-Marie Madigan Leiden University

Y = 1.25 Evolution of ē

 $\gamma = 1.5$

Evolution of ē

Y = 1.75 Evolution of ē

