From BLR and NLR to BH and SF

- Physical processes
- The BLR
- The NLR
- Using BLR properties to infer BH mass and accretion rate
- Using NLR properties to infer L_{AGN} and L_{SF}
- The AGN-starburst connection
- SF and AGN evolution

Physical Processes (Let There Be Light)

AGN is born

- Ionization
- Recombination
- Collisional excitation
- Radiation pressure
- Shock waves
- Magnetic fields

How does it look and moves at various times?

Photoionization: Ionization structure and temperature

Photoionization rate - I_X

Radiative recombination rate - R_X Time dependent ionization

$$\frac{dN_x}{dt} = -N_x [I_x + R_x] + [N_{x-1}I_{x-1} + N_{x+1}R_{x+1}]$$

Heating - H photoionization heating other heating Cooling - C collisional cooling recombination cooling

$$H = C$$

The spectrum of photoionized gas

Photoionization calculations ionization structure thermal structure

Spectral calculations line emission continuum emission line and continuum absorption

The motion of ionized gas

- The equation of motion
 - Gravity g(r)
 - Radiation pressure $a_{rad}(r)$
 - Drag force f_d
 - Pressure gradient

$$a(r) = a_{rad}(r) - g(r) - \frac{1}{\rho} \frac{dP}{dr} + \frac{f_d}{M_c}$$

Accelerating a block

$$a_{rad} - a_{g} = \frac{aL}{4\pi r^{2}cM_{c}} - \frac{GM_{BH}}{r^{2}} =$$
$$= \frac{L}{r^{2}} \left[\frac{a}{4\pi r^{2}cm_{p}N_{H}} - \frac{G}{7.5x10^{4}(L/L_{Edd})} \right]$$

The BLR

- BLR properties
 - High density clouds
 - LOC
 - Disk outflow
- BLR Boundary

 Dust in the BLR
- BLR dynamics
- BLR metallicity

Clouds LOC and winds

С

- Clouds
 - Thermal confinement
 - Stability
 - Magnetic confinement

Locally Optimally emitting Clouds (LOC)

BLR spectrum

Density 10⁹⁻¹¹ cm⁻³ Column density ~10²³ cm⁻² Covering fraction ~0.1

$$r_{BLR} \simeq 0.3 L_{46}^{0.6 \pm 0.1} pc$$

BLR metallicity

The narrow line region – NLR

spectrum Dynamics metallicity Dust in the NLR

Let There Be Dust

Sublimation distance

$$r_{sub,Si} \cong 1.3 L_{46}^{1/2} \left(\frac{1500K}{T_{sub}} \right)^{2.6} pc$$

$$r_{sub,C} \cong 0.5 L_{46}^{1/2} \left(\frac{1800K}{T_{sub}} \right)^{2.6} pc$$

The BLR radius

$$r_{BLR} \simeq 0.3 L_{46}^{0.6 \pm 0.1} pc$$

Photoionized dusty gas

Dust

Dust outside the BLR

Netzer and Laor 1993

Dust in the NLR

Dusty torus and dusty NLRs

Mor, Netzer, Elitzur 2009

Miracles

Using BLR properties to infer BH mass and accretion rate

Reverberation Mapping Single epoch mass determination M_{BH} and L/L_{edd} distributions

Using NLR properties to infer L_{AGN} and L_{SF}

 M_{BH} from M- σ^* L_{AGN} from narrow emission lines

Diagnostic (BPT) diagrams

More diagnostic diagrams

Conclusions: Many objects classified as SBs contain active BHs? Many objects classified as AGN contain SF regions

listributions

The AGN-SB connection

SF in AGN-dominated systems L_{AGN} and L_{SF} correlations Simple evolution scenarios

L_{AGN} vs. L_{SF} in AGN-dominated systems

Netzer et al. 2007; Lutz et al. 2008, Netzer 2009

SF and AGN evolution

