Genuine spectral energy distributions of AGN

M. Almudena Prieto (IAC)

Ringberg, June 2009

PARSEC program

High spatial resolution study of the Nearest Active Galactic Nuclei

Compilation of the highest spatial resolution data available

- Angular scales of $\theta < 0.1''$
- UV + OP + IR + radio

What is new are the achieved angular scales in the 1 to $20\mu m$ from 8-10 class telescopes

- 1 5 μm → θ < 0.1"
- 10 20 μm → θ < 0.5"
- Interferometry at 10 μ m $\rightarrow \theta < 0.05"$

What we have:

• HST at 0.3 - 0.9 μ m $\rightarrow \theta < 0.1''$

What we partially have:

• VLA/ VLBA $\rightarrow \theta < 0.1''$

Some of the nearest ...

		1"/pc	FWH	FWHM core	
			2 µm	20 µm	
S2/RG CenA		16	< 1 pc	< 8 pc	
S2	Circinus	19	~ 2 pc	< 9 pc	
S2	N1068	70	< 4 pc	< 35 pc	
S1/Li	N1097	70	< 10 pc	< 35 pc	
S2	N1386	94	< 8 pc	< 32 pc	
S2	N7582	150	< 12 pc	< 100 pc	
S1.9	N5506	180	< 10 pc	< 90 pc	
04	110700	000			
S 1	N3783	280	< 22 pc	< 140 pc	
S1	N7469	470	< 38 pc	< 230 pc	

Prieto et al. 2004, 05; Haering-Neumayer et al. 2007; Reunanen et al. 2009.

Obscured AGN shows up only from $\sim 2 \; \mu m$ onward

NGC 7582

CIRCINUS HST 8140 A

NGC 5506

Examples of high spatial resolution SEDs

"+" IRAS, ISO, SPITZER, and/or millimetre data

Comparison with an average Seyfert 2 SED taken from Polletta et al. 2007

Dominating AGN: their IR luminosity is $\sim 100\%$ of the total IR emission of the galaxy

The true energy output in the IR

		IRcore IR(large-ap/core)		X _{hv>20keV} / IRcore
S1/Li	N1097	6.5x10 ⁴¹	700	8%
S2/RG	CenA	2x10 ⁴²	50	200 %
S2	Circinus	6x10 ⁴²	10	20%
S1	N1566	2x10 ⁴²	200	200 %
S2	N7582	2.5x10 ⁴³	20	35 %
S2	N1068	8.5x10 ⁴³	20	2 %
S1.9	N5506	2x10 ⁴⁴	1	5%
S1	N3783	4x10 ⁴⁴	1	15%
Qso	3C 273	9x10 ⁴⁶	1	300%

On the nearest AGN

- AGN cores in the IR have sizes less than a few tens of pc
- Their SEDs are characterised by a conspicuous bump peaking in the 2-10 µm range. This bump is very step at the shortest wavelengths in type 2, but shallower in type 1.
- Their IR luminosities are above 80% of the total, this being taken as L_{total} = LIR + LX _{20-100 keV}
- Their IR luminosities can be up to several order of magnitude lower than that of their host galaxy
- Yet, AGN with luminosities above 10⁴⁴ erg/s are as quasars, dominating in full the total IR light of the galaxy