MASS PROFILES OF X-RAY **BRIGHT RELAXED GROUPS:** METHODS AND SYSTEMATICS FABIO GASTALDELLO **IASF-INAF MILANO & UC IRVINE** D. BUOTE UCI P. HUMPHREY UCI L. ZAPPACOSTA TRIESTE J. BULLOCK UCI W. MATHEWS UCSC PDTCHENITT ROLOGNIA

X-RAY MASS DETERMINATION

- Spectra averaged within circular annuli
- Normalization / shape of spectrum gives gas density / temperature

X-RAY MASS DETERMINATION

- 1. Assume spherical symmetry
- Fit spectra with coronal plasma models and obtain (deprojected) spectral quantities
- 3. Fit parameterized functions to radial profiles of gas density and temperature
- 4. Assume hydrostatic equilibrium

5. Colculate the radial mass profile $M(< r) = \frac{rk_B T_g}{G\mu m_p} \left[-\frac{d\ln\rho_g}{d\ln r} - \frac{d\ln T_g}{d\ln r} \right]$

DATA ANALYSYS

"Parametric mass method" is the principal approach of the study: we assume parameterizations for the temperature and mass profiles to calculate the gas density assuming HE

Gas density solution

$$\rho_g(r) = \rho_{g0} \frac{T_0}{T_g(r)} \exp\left(\frac{-\mu m_A G}{k_B} \int_{r_0}^r \frac{M \, dr}{r^2 T_g}\right)$$

We considered also the temperature solution

$$T_{g}(r) = T_{0} \frac{\rho_{g0}}{\rho_{g}(r)} - \frac{\mu m_{A}G}{k_{B}\rho_{g}(r)} \int_{r_{0}}^{r} \frac{\rho_{g}M \, dr}{r^{2}}$$

DATA ANALYSYS

$$\rho_g(r) = \rho_{g0} \frac{T_0}{T_g(r)} \exp\left(\frac{-\mu m_A G}{k_B} \int_{r_0}^r \frac{M \, dr}{r^2 T_g}\right)$$

•Fit gas density and temperature simultaneously assuming only parameterizations for temperature and mass.

Advantages:

better constraints on M

easy to interpret goodness of fit

X-RAY SYSTEMATICS

- 1. HYDROSTATIC EQUILIBRIUM
- 2. MULTIPHASE GAS/PROJECTION EFFECTS IN CORES
- 3. DISCRETE SOURCES IN Es
- 4. BKG SUBTRACTION
- 5. DEPROJECTION AND FITTING PROCEDURES

DATA ANALYSYS

•Chandra inner regions

XMM outer regions

NGC 533

DATA ANALYSIS

Chandra is crucial in the inner region where a steep temperature gradient is present

When data are available, we use Chandra in the core and XMM in the outer regions

NGC 1550

•Projection of the 3D ρ and T thus obtained to the results from spectral analysis, including the radial variation of the plasma emissivity $\Lambda(T, Z_{Fe})$.

•Using an onion peeling deprojection (e.g., Fabian et al. 1981) gives consistent results with the above method

•Spectroscopic like T problem (e.g., Mazzotta et al. 2004). Folding

BKG SUBTRACTION

Bkg subtraction always crucial of course because of low surface brightness but different respect to clusters: particle background is not so crucial, important are the galactic components (and SWCX, we should routinely check for it, e.g. Carter & Sembay 08)

We completely model the various bkg components (e.g. Lumb et al. 2002), exploiting the fact that the source component, mainly characterized by the Fe-L shell, is clearly spectrally separated from the other bkg components

BKG MODELLING

NGC 5044 offset

Buote et al. 2004

RESULTS

•After accounting for the mass of the hot gas, NFW + stars is the best fit model **STARS** 10⁻²⁸ 10¹³ Proj ρ^2 (g² cm⁻⁵) 10⁻²⁹ GAS T (keV) 2 Mass (solar units) 10¹² MKW 4 1.5 1.05 0.90.95 1 1.05 ratio ratio DM 110 0.95 10 10 100 100 10 100 Radius (kpc) Radius (kpc) Radius (kpc) 1.6 10¹³ 1.4 28 10 Proj ρ^2 (g² cm⁻⁵) 1.2 T (keV) 10¹² Mass (solar units) 10⁻²⁹ NGC 533 0.8 10^{-30} 1011 1 1.051.1 1.2 ratio ratio 10¹⁰ 0.95 0.8 10 Radius (kpc)

10

Radius (kpc)

100

1

10

Radius (kpc)

100

100

BKG MODELLING

MKW 4 MOS 1 9'-12' annulus

0.1 GROU ct s⁻¹ keV⁻ 0.01 CXB 10^{-3} 0.5 2 5 10 1 channel energy (keV)

MKW 4

SELECTION OF THE SAMPLE

In Gastaldello et al. 2007 we selected a sample of 16 objects in the 1-3 keV range from the XMM and Chandra archives with the best available data with

- no obvious disturbance in surface brightness at large scale
- •with a dominant elliptical galaxy at the center
- with a cool core
- with a Fe gradient

The best we can do to ensure hydrostatic equilibrium and recover mass from X-rays.

The contribution of the stellar mass

Huge c > 30 in some previous X-ray studies (NGC 6482, Khosroshahi et al. 2004)

Baryons (stars) and DM different distributions

Fitting an NFW model to DM NFW + stellar component can bias high c

(Mamon & Lokas 2005)

RESULTS

•No detection of stellar mass due to poor sampling in the inner 20 kpc or localized AGN disturbance

GASTALDELLO+08

NGC 5044

RESULTS

•No detection of stellar mass due to poor sampling in the inner 20 kpc or localized AGN disturbance

RADIAL RANGE

•RULE OF THUMB: SCALE RADIUS WELL IN THE MIDDLE OF THE FITTED RANGE (IS ENOUGH ?)

•IMPORTANT FOR GROUPS BECAUSE SCALE RADIUS IS SMALL. COMPARISON WITH SUN+08: FIXED INNER RADIUS OF FITTING RANGE OF 40 kpc. GOOD OVERALL AGREEMENT, SOME DISCREPANT CASES, THE HIGHER c ONES:

•NGC 1550 r_s 48 kpc c_{500} 9.0±0.6 SUN c_{500} 4.9±0.6 NGC 533 r_s 43 kpc c_{500} 9.0±0.7 SUN c_{500} 4.6 +3.9 -2.3

SYSTEMATICS

Systematic Error Budget Group Best Fit **AStatistical ABackground** ∆Spectral AMethod ΔDeproj Δr_{e} 65 NGC 5044 3.8 -0.5+0.2+0.1+0.6 $-0.3(\pm 0.2)$ NGC 1550..... 4.5 ± 0.3 +0.4 ± 0.2 -0.1 $-0.8(\pm 0.3)$ +0.5NGC 2563 2.4 +2.3-0.1 ± 1.0 +2.6 $+45(\pm 1.4)$ +0.8A262... 2.1 ± 0.2 +0.2-0.4 $-0.4 (\pm 0.2)$ -0.20.6 NGC 533 6.1 ± 0.5 -1.7-2.0+1.1 $-1.5(\pm 0.4)$ +0.9+0.3MKW 4 -0.1-0.3 $+0.8(\pm 0.7)$ 43 +0.3-0.3-87 IC 1860 3.2 ± 0.3 +0.1-1.3-0.4 NGC 5129. 5.2 ± 0.9 +0.6-0.4-0.3 $-0.2(\pm 2.2)$ NGC 4325..... 2.8 +0.7+0.9+0.3 ± 0.4 $-0.7(\pm 0.3)$ ESO 5520200..... 2.5 ± 0.3 -0.2-0.3+0.1+0.2 (±0.4) AWM 4 3.0 ± 0.3 +0.1-0.2-0.1 $-0.9(\pm 0.3)$ +0.8 2.1 -0.3ESO 3060170..... ± 0.3 -0.4 $-0.1(\pm 0.3)$ RGH 80..... 5.1 ± 0.5 +2.1+4.5-2.6 $+2.9(\pm 1.2)$ $^{+1.5}_{-0.5}$ MS 0116.3-0115..... 2.0 ± 0.8 +0.7+1.0 $+2.3(\pm 1.9)$ +0.1-0.1A2717.... 3.0 ± 0.2 -0.2+0.6 (±0.3) RX J1159.8+5531 5.6 ± 1.5 -0.9 ± 0.7 -1.2 $+2.6(\pm 1.7)$ MA/1013 M. NGC 5044..... 1.85 -0.10 ± 0.04 +0.28-0.41 $+0.34(\pm 0.09)$ NGC 1550..... 1.42 ± 0.03 -0.04-0.03+0.02+0.26 (±0.09) +0.01NGC 2563 0.92 ± 0.08 -0.06-0.17+0.01 $-0.24(\pm 0.13)$ +0.24A262..... 3.59 -0.19 ± 0.14 +0.34 $+1.00(\pm 0.31)$ +0.10-0.67 +0.15 NGC 533..... 1.30 ± 0.04 +0.16-0.04 $-0.01(\pm 0.07)$ -0.05+0.12MKW 4..... 3.21 ± 0.10 -0.10+0.09 $-0.86(\pm 0.18)$ +0.03:133 IC 1860 2.36-0.08 ± 0.13 +0.65-0.20 +0.08 NGC 5129 0.84-0.02 ± 0.07 $-0.13(\pm 0.15)$ -0.20NGC 4325..... 1.32 ± 0.16 -0.15-0.10 $+0.53(\pm 0.45)$ +0.70-0.13ESO 5520200 5.51 ± 0.51 +0.35-0.40+0.49 (±0.71) AWM 4 7.38 ± 0.61 -0.27-0.70+0.16 $+2.01(\pm 0.87)$ +2.07+1.30ESO 3060170..... 5.97 ± 1.14 +0.73 $+0.68(\pm 1.37)$:13 +0.26-0.14RGH 80 1.85 ± 0.07 +0.48-0.07 (±0.19) -0.80 MS 0116.3-0115 4.92 ± 1.64 +0.46-1.12 $-0.40(\pm 3.76)$ -1.42A2717:..... 10.68 ± 0.51 -0.03+1.02+0.49 $-0.76(\pm 0.86)$ +0.97-0.29RX J1159.8+5531 6.13 ± 3.30 +0.51-1.87 (±0.72)

 M_{ν}/L_{κ} $(M_{\odot}, L_{\odot}^{-1})$ (NFW+stars)

IMPROVEMENTS

•GO TO LARGER RADII: XMM/SUZAKU OFFSET OBSERVATIONS

NGC 5044 offset Buote et al. 2004

A SPECIAL ERA IN X-RAY ASTRONOMY

Chandra

XMM-Newton

1 arcsec resolution

•High sensitivity due to high effective area, i.e. more photons

DM DENSITY PROFILE

$$\rho(r) \propto r^{-1}(r_s + r)^{-2}$$

$$c = r_{vir} / r_s$$

The concentration parameter c do not depend strongly on the innermost data points, r < $0.05 r_{vir}$ (Bullock et al. 2001, B01; Dolag et al. 2004, D04).

Navarro et al. 2004

Pointecouteau et al. 2005

Vikhlinin et al. 2006

• NFW a good fit to the mass profile

•c-M relation is consistent with no variation in c and with the gentle decline with increasing M expected from CDM ($\alpha = -0.04 \pm 0.03$, P05).

Group	z	Dist Mpc	ACIS Aim point	Chandra exp (ks)	EPIC filter	pn mode	XMM exp (ks)	r _{out} e kpc	Δ^d
NGC 5044	0.0090	38.8	S	20.2	Thin	FF	19.5/19.3/8.9+ 38 $1/38$ $1/32$ 0^{5}	326	101.9
NGC 1550	0.0124	53.6	I	9.8 ± 9.6^{a}	Medium	FF	21.4/22.6/17.8	213	102.2
NGC 2563	0.0149	64.5			Medium	FF	20.4/20.8/16.5	219	102.4
A 262	0.0163	70.7	S	28.7	Thin	EFF	23.5/23.4/15.0	254	102.5
NGC 533	0.0185	80.3	S	36.7	Thin	FF	38.1/37.4/30.1	271	102.7
MKW 4	0.0200	87.0	S	29.8	Medium	EFF	14.0/13.9/9.4	336	103.1
IC 1860	0.0223	97.1			Thin	FF	34.1/34.8/28.0	323	103.1
NGC 5129	0.0230	100.2			Medium	FF	10.9/12.0/10.7	241	103.1
NGC 4325	0.0257	112.2	S	30.0	Thin	FF	20.8/20.8/14.7	238	103.3
ESO 5520200	0.0314	137.7			Thin	EFF	32.2/32.2/26.7	418	103.8
AWM 4	0.0317	139.0			Medium	EFF	17.5/17.2/12.5	455	103.9
ESO 3060170	0.0358	157.5	I	$13.8 + 13.9^{a}$				245	104.2
RGH S0	0.0379	167.0	S	38.5	Thin	EFF	32.8/32.6/26.3	533	104.4
MS 0116.3-0115	0.0452	200.2	S	39.0				350	105.0
A 2717	0.049	217.7			Thin	FF	49.2/49.6/42.9	730	105.3
RXJ 1159.8+5531	0.081	368.0	S	75.0				625	108.0

Table 1. The group sample and journal of observations

Group	Δ	r_s (kpc)	c_{Δ}	r_{Δ} (kpc)	M_{Δ} (10 ¹³ M_{\odot})	$M_{gas,\Delta}$ (10 ¹² M_{\odot})	$f_{gas,\Delta}$	$M_{DM,\Delta}$ (10 ¹³ M_{\odot})	$M_{\star,\Delta}$ (10 ¹⁰ M_{\odot}
NGC 5044	1250	77 ± 2	3.8±0.1	295 ± 2	1.85 ± 0.04	1.21 ± 0.02	0.065 ± 0.001	1.72 ± 0.04	
NGC 1550	2500	48 ± 4	4.5 ± 0.3	215 ± 2	1.42 ± 0.03	1.02 ± 0.02	0.072 ± 0.001	1.31 ± 0.03	11.2 ± 4.2
NGC 2563	2500	76 ± 22	2.4 ± 1.0	185 ± 5	0.92 ± 0.08	0.31 ± 0.03	0.034 ± 0.001	0.89 ± 0.08	
Abell 262	2500	141 ± 16	2.1 ± 0.2	292 ± 4	3.59 ± 0.14	2.60 ± 0.08	0.072 ± 0.001	3.31 ± 0.13	22.1 ± 4.5
NGC 533	1250	43 ± 4	6.1 ± 0.5	262 ± 2	1.30 ± 0.04	0.87 ± 0.02	0.067 ± 0.001	1.19 ± 0.04	22.4 ± 2.2
MKW4	1250	81 ± 7	4.3 ± 0.3	353 ± 4	3.21 ± 0.10	2.84 ± 0.06	0.088 ± 0.002	2.87 ± 0.10	61.8 ± 7.2
IC 1860	1250	101 ± 12	3.2 ± 0.3	319 ± 6	2.36 ± 0.13	1.56 ± 0.05	0.066 ± 0.002	2.18 ± 0.12	26.4 ± 6.3
NGC 5129	1250	43 ± 10	5.2 ± 0.9	226 ± 7	0.84 ± 0.07	0.58 ± 0.06	0.069 ± 0.003	0.78 ± 0.07	2.8+6.7
NGC 4325	2500	75 ± 18	2.8 ± 0.4	208 ± 8	1.32 ± 0.16	0.66 ± 0.03	0.050 ± 0.004	1.26 ± 0.16	
ESO5526020	1250	171 ± 27	2.5 ± 0.3	422 ± 13	5.51 ± 0.51	3.35 ± 0.18	0.061 ± 0.002	5.17 ± 0.50	
AWM 4	1250	154 ± 17	3.0 ± 0.3	465 ± 13	7.38 ± 0.61	4.79 ± 0.29	0.065 ± 0.003	6.88 ± 0.59	$22.5^{+24.7}_{-22.8}$
ESO3060170	2500	162 ± 54	2.1 ± 0.3	343 ± 18	5.97 ± 1.14	3.45 ± 0.17	0.058 ± 0.005	5.62 ± 1.12	
RGH 80	500	78 ± 8	5.1 ± 0.5	397 ± 5	1.85 ± 0.07	2.85 ± 0.11	0.154 ± 0.003	1.56 ± 0.06	
MS 0116.3-0115	1250	202 ± 115	2.0 ± 0.8	405 ± 42	4.92 ± 1.64	1.97 ± 0.19	0.040 ± 0.009	4.73 ± 1.63	
Abell 2717	500	233 ± 18	3.0 ± 0.2	710 ± 11	10.68 ± 0.51	11.36 ± 0.29	0.106 ± 0.003	9.55 ± 0.49	
RXJ 1159.8+5531	500	104 ± 77	5.6 ± 1.5	584 ± 73	6.13 ± 3.30	5.10 ± 0.41	0.083 ± 0.019	5.57 ± 3.32	56.9 ± 10.

Table 4. Results for the NFW virial quantities at selected overdensity

Note. — Results for the mass profile fits. Δ refers to the overdensity chosen for the object, as the closest to the outer radius of the data. r_s is the scale radius of the NFW profile.

Name	Group	r_{e} (B) kpc (arcsec)	$r_{e}~({ m K})$ kpc (arcsec)	$L_{ m B}$ 10 ¹⁰ L $_{\odot}$	L _K 10 ¹¹ L _☉
NGC 5044	NGC 5044		4.53 (24.5)	6.98	2.87
NGC 1550	NGC 1550	6.45 (25.5)	3.05 (12.1)	4.33	2.09
NGC 2563	NGC 2563	5.89 (19.3)	3.73 (12.2)	3.84	2.66
NGC 708	A 262	25.60 (77.1)	10.16 (30.6)	3.84	4.12
NGC 533	NGC 533	16.92 (45.4)	9.22 (25.2)	12.4	6.14
NGC 4073	MKW 4	19.24 (47.5)	10.25 (25.3)	13.7	7.18
IC 1860	IC 1860	8.34 (18.5)	8.03 (17.8)	6.08	4.38
NGC 5129	NGC 5129	13.34 (28.7)	6.60 (14.2)	12.0	4.99
NGC 4325	NGC 4325		5.22 (10.1)	4.61	2.33
ESO 552-020	ESO5520200		15.7 (25.0)	15.6	8.19
NGC 6051	AWM 4	10.21 (16.1)	10.33 (16.3)	9.91	7.50
ESO 306-017	ESO3060170		18.51 (26.0)	18.5	6.95
MCG 6-29-77	RGH80		5.11 (6.8)	· · · · · · · · · · · · ·	2.93
MCG 6-29-78	RGH80		6.23 (8.3)	4.21	2.39
UGC 842	MS 0116.3-0115		9.69 (10.9)	9.29	5.77
ESO 349-22	A 2717		15.53 (16.2)	9.20	5.42
2MASSX J11595215	RXJ 1159.8+5531		9.77 (6.4)	23.6	10.3

Galaxy	$L_{\rm K}/L_{\rm B}$	Fitted M_{\star} NFW+H90	$/L_{\rm K} (M_{\odot}/L_{\odot})$ NFW*AC+H90
NGC 1550	4.8	0.53 ± 0.20	0.24 ± 0.01
NGC 708	10.7	0.54 ± 0.11	0.14 ± 0.10
NGC 533	4.9	0.36 ± 0.03	0.11 ± 0.01
NGC 4073	4.6	0.86 ± 0.10	0.33 ± 0.04
IC1860	7.2	0.60 ± 0.14	0.26 ± 0.01
NGC 5129	4.1	$0.06^{+0.13}_{-0.06}$	0.05 ± 0.01
NGC 6051	7.6	$0.30_{-0.30}^{+0.33}$	0.18 ± 0.01
2MASSX J11595215	4.4	0.55 ± 0.10	0.40 ± 0.05

Table 5. Stellar mass-to-light ratios