Weighing the 0957+561 Cluster

Reiko Nakajima, UC Berkeley

- If:
 - Shear
 γ
 is known
 - Shear is integrated out from infinity
 - No other intervening LSS
 - Two-dimensional cluster

- If:
 - Shear γ is known
 - Shear is integrated out from infinity
 - No other intervening LSS
 - Two-dimensional cluster

- Exact when Universe consists of:
- You (observer)
- Pancake-shaped cluster
- Some shear pattern around the pancake
- Nothing between you and the pancake

- If:
 - Shear γ is known
 - Shear is integrated out from infinity
 - No other intervening LSS
 - Two-dimensional cluster

- Unrealistic assumptions
- Use simulation or modeling to estimate magnitude of systematics

- If:
 - Shear γ is known
 - Shear is integrated out from infinity
 - No other intervening LSS
 - Two-dimensional cluster

 Stacking shear info from multiple clusters to average out LSS effects

- If:
 - Shear γ is known
 - Shear is integrated out from infinity
 - No other intervening LSS
 - Two-dimensional cluster

Increase FOV

- If:
 - Shear
 γ
 is known
 - Shear is integrated out from infinity
 - No other intervening LSS
 - Two-dimensional cluster

- Shear estimation
 - Infinite number of source images
 - deep images
 - bands
 - Shape measurement
 - PSF
 - method
- Angular diameter dist.
 - Redshifts known
 - Cosmology known

Q0957+561 Lens System

Strong Lens

SL Mass Sheet Degeneracy

Weak Lensing

HST ACS WFC Image, $6' \times 6'$ FOV

WL Mass Sheet Degeneracy

- Set outer bounds
- Model contribution from infinity

0957+561 Cluster Model

- Model the strong lens region (r < 30") as
 - galaxy $\psi_g(\theta)$, and
 - cluster $\psi_c(\theta)$ to 3rd order mass sheet κ_c
 - + dipole σ_c
 - + constant shear γ_c
 - + external sextupole δ_c
- Measure cluster terms in 30"< r <186"

Mass Sheet = Monopole

- Mass sheet K_c
 (internal monopole)
- Net tangential shear, dropoff ∝ r⁻²
- $\kappa_c = 0.146 \pm 0.049$ $\Rightarrow 6\%$ uncertainty in $(1-\kappa_c)$

Internal Dipole

• Mass dipole σ_c

(internal mass dipole)

- Dipole ⇒ cluster center offset from G1
- Dropoff $\propto r^{-3}$

•
$$(1 - \kappa_c) \sigma_c =$$

$$\begin{cases} -0.0028 \pm 0.0048 \\ -0.0054 \pm 0.0053 \end{cases}$$

Constant Shear = External Quadrupole

• Constant shear γ_c

HST ACS WFC Image, 6'×6' FOV

External Sextupole

HST ACS WFC Image, 6'×6' FOV

- External Sextupole δ_c
- Internal shear $\propto r$

0957+561 Cluster Results WL Data for SL Modeling

Quasar and Galaxy subtracted

- Strong lensing models $\psi(\theta), \sigma_c, \gamma_c, \delta_c$
- Internal multipole measurements provide constraints (κ_c , σ_c)
- External multipole measurements noisy

The End