Weighing clusters: the X-ray view

Introduction and context

Gabriel W. Pratt

MPE

Measuring masses in X-rays

X-ray mass measurement

Assume spherical symmetry

Hydrostatic equation:

$$
\frac{1}{\rho}\frac{dP}{dr}=-\frac{GM(r)}{r^2}
$$

Ideal gas:

$$
P=nkT=\frac{\rho}{\mu m_p}kT
$$

$$
M(r) = -\frac{kT}{\mu m_p} \frac{r}{G} \left[\frac{d \ln \rho}{d \ln r} + \frac{d \ln T}{d \ln r} \right]
$$

X-ray mass measurement

Assume spherical symmetry

Hydrostatic equation:

$$
\frac{1}{\rho}\frac{dP}{dr}=-\frac{GM(r)}{r^2}
$$

Ideal gas:

$$
P = nkT = \frac{\rho}{\mu m_p} kT
$$

$$
M(r) = -\frac{kT}{\mu m_p} \frac{r}{G} \left[\frac{d \ln \rho}{d \ln r} + \frac{d \ln T}{d \ln r} \right]^{Isothermal}
$$
 (historical, distribution)

Historical

Fabricant et al. 1980 (M87 with *Einstein*, using T profile)

Density profile

Pointecouteau et al. 2004 (Abell 478)

Temperature profile

Mass profile

Pointecouteau et al. 2005

Mass profile modelling

Mass profile modelling

$$
\rho_r = \frac{\rho_c(z)\delta_c}{(r/r_s)(1+r/r_s)^2}
$$
\n
$$
r_\delta = c_\delta r_s
$$
\nNavarro et al. 1997\n
$$
\frac{3}{s}m(r/r_s)
$$
\n
$$
\frac{x}{(1+x)} \cdot \frac{1}{s}
$$
\n
$$
x = 1
$$
\n
$$
s
$$
\n
$$
x = 1
$$
\n
$$
s
$$
\n

$$
M(r) = 4\pi \rho_c(z) \delta_c r_s^3 m(r/r_s)
$$

$$
m(x) = \ln(1+x) - x/(1+x)
$$
_{Stto et al. 1998}

Mass profile modelling

Pratt & Arnaud 2002 (Abell 1413)

Scaled total mass/density profiles Regular systems, assume spherical symmetry, HE

Pratt & Arnaud 2005; Pointecouteau, Arnaud & Pratt 2005 (XMM, regular)

Vikhlinin et al 2006 (Chandra, regular)

Dark matter constraints:*c - M* relation Quantitative test of CDM scenario

Pratt & Arnaud 2005; Pointecouteau, Arnaud & Pratt 2005 (XMM, relaxed)

Vikhlinin et al 2006 (Chandra, relaxed) see also: Sato et al 2000, Gastaldello et al. 2007, Buote et al. 2007, Humphrey

Mass proxy relations

X-ray scaling laws in self-similar scenario

Virial theorem

 GM_δ $\overline{R_\delta}$ $\propto kT$

Constant gas mass *fraction* $f_{\rm gas} = M_{\rm gas, \delta}/M_{\delta} = \rm const.$ X-ray scaling laws for global properties

 $\overline{T}\propto \overline{M/R}\propto R^2\propto \overline{M}^{2/3}$ $M \propto T^{3/2}$ $R \propto T^{1/2}$ (interesting for cosmo)

(assuming Bremsstrahlung) $\overline{L} \propto M^{4/3}$ $|L \propto T^2|$ (interesting for cosmo)

Mass proxy relations

Kravtsov et al. 2006 (cosmological numerical simulations)

$M-T$ relation Assume spherical symmetry, HE, regular systems

Fractional deviations (wrt self-similar relation)

Kravtsov et al. 2006

$M-Y_X$ relation $\boxed{Y_X = M_{g,500} \ T}$

Arnaud et al. 2007

Evolution

 $M-T$; 0.4 < z < 0.7

$M - Y_X$; 0.1 < z < 0.8

Kotov & Vikhlinin 2006 Maughan 2007 Maughan 2007

 $\overline{}$

$$
M_{500} = h(z)^{1.02 \pm 0.20} \; T^{3/2}
$$

X-ray vs weak lensing

Vikhlinin et al. 2008 (+Hoekstra 2007)

Zhang et al. 2008

$L - M$ relation

(Some) Points of concern

Data quality issues Surface brightness/density profiles

Vikhlinin et al. 2008

Croston et al. 2008

Data quality issues Temperature profiles

Data analysis issues Background subtraction

Belsole et al. 2005

Data analysis issues Noise amplification due to deconvolution

Pointecouteau et al. 2008

Data analysis issues

Parametric models may over-constrain and limit uncertainties

Vikhlinin et al. 2006

Conclusions

X-ray mass estimation method well established

General support for CDM model • mass profiles, c-M relation for regular systems

Work ongoing for X-ray mass proxy relations • per cent level agreement of *observed* local X-ray mass proxy relations (normalisation and slope)

• normalisation disagreement (<10 per cent) wrt state of the art simulations (possible evidence for non-thermal pressure support?)

• cross-calibration with lensing still in infancy & inconclusive re: nonthermal pressure; also, how to compare at low masses?

• evolution of relations relatively untested (calibration of isothermal assumption needed?)

Future progress - current data

X-ray data quality should be strictly controlled

- need to detect out to R₅₀₀ in SB and temperature for precise log gradients
- significant mass/temperature *and* redshift range needed
- background subtraction requires local estimate (nearby systems fill FoV) \Rightarrow longer exposures for distant systems, offset pointings for nearby objects

Deconvolution

- unstable even if PSF effects negligible
- parametric models may underestimate errors by forcing smooth functions

Application of HE to unrelaxed systems

• must understand the consequences (simulations?)

Future progress (X-ray)

What instrument?

- Chandra
	- + PSF not an issue (at centre), point source subtraction at high-z
	- ACIS-S FoV is small,ACIS low energy response suspect, throughput

• Suzaku

- + Lower background cf Chandra or XMM
- PSF 100x Chandra, 10x XMM

• XMM

- + FoV, throughput
- PSF, background variability

Proposing

- Pressure factor of 7-8 (1-2 proposals accepted in priority A, 3-4 in B)
- < 1.5 Msec available for Topic F (A+B+C, A07)
- < 6 Msec available for ALL Large Programmes (AO-7)

End