BoundedSineGaussianPrior

class dysmalpy.parameters.BoundedSineGaussianPrior(center=0, stddev=1.0)[source]

Bases: Prior

Object for priors described by a bounded sine Gaussian distribution

Parameters:
  • center (float) – Central value of the Gaussian prior BEFORE applying sine function

  • stddev (float) – Standard deviation of the Gaussian prior AFTER applying sine function

Methods Summary

log_prior(param, **kwargs)

Returns the log value of the prior given the parameter value

prior_unit_transform(param, u, **kwargs)

Transforms a uniform random variable Uniform[0.,1.] to the prior distribution

sample_prior(param[, N])

Returns a random sample of parameter values distributed according to the prior

Methods Documentation

log_prior(param, **kwargs)[source]

Returns the log value of the prior given the parameter value

The parameter value is first checked to see if its within param.bounds. If so then a Gaussian distribution on the sine of the parameter is used to calculate the prior.

Parameters:

param (DysmalParameter) – DysmalParameter object with which the prior is associated

Returns:

lprior – Log prior value

Return type:

float

prior_unit_transform(param, u, **kwargs)[source]

Transforms a uniform random variable Uniform[0.,1.] to the prior distribution

Parameters:
Returns:

v – Transformation of the random uniform variable u to random value(s) drawn from the prior distribution.

Return type:

float or list-like

sample_prior(param, N=1, **kwargs)[source]

Returns a random sample of parameter values distributed according to the prior

Parameters:
Returns:

rsamp – Random sample of parameter values

Return type:

float or array