GaussianPrior
- class dysmalpy.parameters.GaussianPrior(center=0, stddev=1.0)[source]
Bases:
Prior
Object for gaussian priors
- Parameters:
Methods Summary
log_prior
(param, **kwargs)Returns the log value of the prior given the parameter value
prior_unit_transform
(param, u, **kwargs)Transforms a uniform random variable Uniform[0.,1.] to the prior distribution
sample_prior
(param[, N])Returns a random sample of parameter values distributed according to the prior
Methods Documentation
- log_prior(param, **kwargs)[source]
Returns the log value of the prior given the parameter value
- Parameters:
param (
DysmalParameter
) –DysmalParameter
object with which the prior is associated- Returns:
lprior – Log prior value calculated using
pdf
- Return type:
- prior_unit_transform(param, u, **kwargs)[source]
Transforms a uniform random variable Uniform[0.,1.] to the prior distribution
- Parameters:
param (
DysmalParameter
) –DysmalParameter
object with which the prior is associatedu (float or list-like) – Random uniform variable(s) drawn from Uniform[0.,1.]
- Returns:
v – Transformation of the random uniform variable u to random value(s) drawn from the prior distribution.
- Return type:
float or list-like
- sample_prior(param, N=1, **kwargs)[source]
Returns a random sample of parameter values distributed according to the prior
- Parameters:
param (
DysmalParameter
) –DysmalParameter
object with which the prior is associatedN (int, optional) – Size of random sample. Default is 1.
- Returns:
rsamp – Random sample of parameter values
- Return type:
float or array